摘要
将ALE(任意的拉格朗日-欧拉)运动学描述关系引入到Navier-Stokes方程中,在时间域上采用分步离散方法中的速度修正格式,利用Galerkin加权余量方法推导了系统的有限元数值离散方程;推导了考虑表面张力效应时有限元边界条件的弱积分形式。模拟了考虑表面张力情况下圆筒形贮腔中液体的非线性晃动,揭示了考虑表面张力效应时液体非线性晃动的重要特征。
The ALE (Arbitrary Lagrange-Euler) kinematic description is introduced into the finite element fractional step method. The corresponding discrete numerical equations are developed by Galerkin weighted residual method afterwards. The boundary condition about free-surface tension is represented in the form of weak integration. Three-dimensional large amplitude liquid sloshing in a cylindrical tank is simulated and some important nonlinear characteristics of three-dimensional nonlinear liquid sloshing are obtained.
出处
《力学季刊》
CSCD
2000年第4期432-436,共5页
Chinese Quarterly of Mechanics
基金
国家自然科学基金(19782003)
上海市科技发展(98JC14032)基金
中国博士后基金