期刊文献+

一种基于参数优化C-SVM的脑电信号分类方法及应用 被引量:2

A parameter optimized C-SVM approach for EEG classification and its application
原文传递
导出
摘要 脑电信号(electroencephalograph,EEG)由于自身信号微弱且容易受到周边环境和大脑内部其他活动的影响,对其进行特征分类并提高分类准确率这一问题一直是脑机接口领域的难点。传统的基于支持向量机(support vector machines,SVM)的脑电信号特征分类方法在选取惩罚参数与核函数参数时大都只是采用经验数据,而忽略了参数优化对提升SVM分类效果重要性,而现有的参数优化方法计算复杂严重影响了分类效率。针对以上问题,提出了一种通过交叉检验和LOO误差上界对C-SVM中的惩罚参数C和核函数参数进行优化的方法,并在理论分析的基础上结合实验证明了参数优化后的分类方法能够有效提高脑电信号分类的准确率且对分类效率影响不大。 The feature classification of EEG signal is one of the key-technology for Brain-Computer Interface technology. The traditional SVM-based EEG feature classification paid more attention on the effectiveness of SVM algorithm but ignored the parameters" contribution to increasing the SVM "s performance. The existing parameter optimization methods cost too much time in calculating and seriously affect the efficiency of classification. In this paper, a novel parameter optimized C- SVM approach using cross-validation and leave-one-out(LOO) estimation is put forward in order to find the optimal penalty parameter C and kernel function parameters. Experimental results by controlling the intelligent wheelchair via the BCI sys- tem on it verified the theoretical analysis.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2014年第1期131-136,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 科技部国际合作项目(2010DFA12160)~~
关键词 支持向量机(SVM) 脑电信号(EEG) 参数估计 交叉检验 LOO误差上界 support vector machines(SVM) electroencephalograph(EEG) parameter estimation cross-validation LOO estimation
  • 相关文献

参考文献11

  • 1JONATHAN R W, NIELS B, DENNIS J M, et al. Brain- computer Interfaces for Communication and Control [ J ]. Clinical Neurophysiology, 2002, 113 (6) : 767-791.
  • 2GUO Lei. Classification of Mental Task From EEG Sig- nals Using Immune Feature Weighted Support Vector Ma- chines [ J]. IEEE Transactions on Magnetics, 2011, 47 (5) : 866-869.
  • 3DANIEL J S, JAMES A B. Support Vector Machine Techniques for Nonlinear Equalization [ J ]. IEEE Trans- actions on Signal Processing, 2000, 48 ( 11 ) : 3217- 3226.
  • 4徐宝国,宋爱国,王爱民.基于小波包能量的脑电信号特征提取方法[J].东南大学学报(自然科学版),2010,40(6):1203-1206. 被引量:12
  • 5ELENA L G. A Wavelet-like Filter Based on Neuron Ac- tion Potentials for Analysis of Human Scalp Electroen- cephalographs [ J ]. IEEE transactions on bio-medical en- gineering, 2005, 52( 11 ) : 1851-1862.
  • 6BAYRAM I, SELESNICK I W. Frequency Domain De- sign of Overcomplete Rational Dilation Wavelet Trans- forms [ J ]. IEEE Transactions on Signal Processing, 2009, 57(8) : 2957-2972.
  • 7YIN Jinliang, ZHU Yongli, YU Guoqin. Power Trans- former Fault Diagnosis Based on Support Vector Machine with Cross Validation and Genetic Algorithm [ C ]//IEEE. Advanced Power System Automation and Protection. Bei- jing: IEEE Press, 2011, 1 : 309-313.
  • 8VLADIMIR N V. Statistical Learning Theory [ M ]. A- merica: Wiley-Interscience, 1998.
  • 9CARL S. Parameter Selection for Support Vector Ma- chines[EB/OL]. (2002-06-06) [2011-09-03]. http:// www. hpl. hp. com/techreports/2002/HPL-2002-354R1. html.
  • 10SUN Aiqin, FAN Binghui, JIA Chaochuan. Motor Image- ry EEG-based Online Control System for Upper Artificial Limb[ C]//IEEE. International Conference on Transpor- tation, Mechanical and Electrical Engineering. Chang- Chun : IEEE Press, 2011, 1 : 1646-1649.

二级参考文献14

  • 1van Gerven M,Farquhar J,Schaefer R,et al.The brain-computer interface cycle[J].J Neural Eng,2009,6(4):1-10.
  • 2Vaughan T M,Wolpaw J R.The third international meeting on brain-computer interface technology:making a difference[J].IEEE Trans Neural Syst Rehabil Eng,2006,14(2):126-127.
  • 3Wolpaw J R,Birbaumer N,McFarland D J,et al.Brain-computer interfaces for communication and control[J].Clinical Neurophysiology,2002,113(6):767-791.
  • 4Pfurstcheller G,Muller-Putz G R,Schlogl A,et al.15 years of research at Graz University of Technology:current projects[J].IEEE Trans Neural Syst Rehabil Eng,2006,14(2):205-210.
  • 5Varsta M,Heikkonen J,Millan J.Evaluating the performance of three feature sets for brain-computer interfaces with an early stopping MLP committee[C] //Pro-ceedings of the 15 th International Conference on Pattern Recognition.Barcelona,Spain,2000:2907-2910.
  • 6Burke D P,Kelly S P,de Chazal P,et al.A parametric feature extraction and classification strategy for brain-computer interfacing[J].IEEE Trans Neural Syst Rehabil Eng,2005,13(1):12-17.
  • 7Pfurstcheller G,Neuper C.Motor imagery and direct brain-computer communication[J].Proceedings of the IEEE,2001,89(7):1123-1134.
  • 8Zhang J,Zheng C,Xie A.Bispectrum analysis of focal ischemic cerebral EEG signal using third-order recursion method[J].IEEE Trans Biomed Eng,2000,47(3):352-359.
  • 9Fatourechi M,Mason S G,Birch G E.A wavelet-based approach for the extraction of event related potentials from EEG[C] //Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing.Quebec,Canada,2004:737-740.
  • 10Blankertz B,Muller K R,Curio G,et al.The BCI competition 2003:progress and perspectives in detection and discrimination of EEG single trials[J].IEEE Trans Biomed Eng,2004,51 (6):1044-1051.

共引文献11

同被引文献26

  • 1张小蓟,张歆,孙进才.基于经验模态分解的目标特征提取与选择[J].西北工业大学学报,2006,24(4):453-456. 被引量:14
  • 2金晶,王行愚,张秀.基于能量特征的左右手运动想象脑信号的识别方法[J].华东理工大学学报(自然科学版),2007,33(4):536-540. 被引量:5
  • 3邓乃杨,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2004.
  • 4邵晨曦,王剑,范金锋,杨明,王子才.一种自适应的EMD端点延拓方法[J].电子学报,2007,35(10):1944-1948. 被引量:71
  • 5Bickel P J.A distribution free version of the Smirnov two sample test in the p-variate case[J].The Annals of Mathematical Statistics,1969,40(1):1-23.
  • 6Friedman J H,Rafsky L C.Multivariate generalizations of the wald wolfowitz and smimov two-sample tests[J].The Annals of Statistics,1979,7(4):697-717.
  • 7Schilling M F.Multivariate two-sample tests based on nearest neighbors[J].Journal of the American Statistical Association,1986,81(395):799-806.
  • 8Rosenbaum P R.An exact distribution-free test comparing two multivariate distributions based on adjacency[J].Journal of the Royal Statistical Society:Series B;Statistical Methodology,2005,67(4):515-530.
  • 9Aslan B,Zech G.New test for the multivariate two-sample problem based on the concept of minimum energy[J].Journal of Statistical Computation and Simulation,2005,75(2):109-119.
  • 10CHEN H, Friedman J H. New graph-based two-sample tests for multivariate distributions [BE/OL]. 2013-07-15. http://arxiv. org/abs/1307. 629.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部