期刊文献+

一种新颖的微纳流体器件制造方法与痕量富集应用 被引量:1

A Novel Method for Fabricating Micro-Nanofluidic Devices and Its Application to Trace Enrichment
下载PDF
导出
摘要 建立了一种利用光致聚合反应制备微纳流体器件的新方法,并开展了相应的痕量富集实验研究:建立描述光致聚合反应中引发剂分解、自由基消耗、聚合反应等的理论模型,利用COMSOL软件计算分析了微尺度凝胶光致聚合反应过程,获得凝胶纳米筛宽度随曝光时间和光强的变化规律;以倒置荧光显微镜为平台,通过聚焦和分光等控制手段,在微流道的特定区域实现孔密度可调的凝胶纳米筛集成,形成微纳流控芯片;以Poisson-Nernst-Planck模型为基础,对纳流体电动富集过程进行计算,确定纳孔密度与富集倍率的关系;利用制备的芯片开展纳流体电动富集实验,发现前驱液中单体丙烯酰胺与交联剂N,N'-亚甲基双丙烯酰胺质量比为9∶1时,对痕量异硫氰酸荧光素(Fluorescein isothiocyanate,FITC)小分子的富集倍率达到600倍。 A new method for fabricating micro-nanofluidic devices through photopolymerization was developed and related experimental research on trace enrichment was undertaken. COMSOL software was utilized to calculate and analyze the gel photopolymerization process in microscale and a mathematical model of photopolymerization including photoinitiator decomposition, radical consumption, polymerization, etc. , was established. The influence of the exposure time and the light intensity on gel nanosieve width was investigated. With an inverted fluorescence microscope, the micro-nanofluidic chip was prepared by integrating pore density-tunable gel nanosieves into specific areas of the microchannels through focusing, beam splitting and other control means. Based on the Poisson-Nernst-Planck model, the process of nanofluid-based electrokinetic enrichment process was simulated numerically, and the relationship between nanopore density and concentration ratio was investigated. Utilizing the prepared chips, the experiments of nanofluid-based eleetrokinetic enrichment were performed and the enrichment ratio of fluorescein isothiocyanate (FITC) could reach 600-fold as the mass ratio of the monomer aerylamide and the erosslinker N,N'-methylenebisacrylamide was 9: 1.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2014年第2期166-172,共7页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(Nos.91023046,91023017,51075056) 国家863项目(No.2012AA040406)资助~~
关键词 微纳流控芯片 纳流体电动富集 光致聚合反应 纳孔密度 Micro-nanofluidic chip Nanofluid-based electrokinetic enrichment Photopolymerization Nanopore density
  • 相关文献

参考文献4

二级参考文献88

  • 1张世文,廉育英.憎水性与接触角的测量[J].现代计量测试,1994,2(3):36-41. 被引量:20
  • 2LIN Bing-Cheng, QIN Jian-Hua. Graphic Laboratory on a Microfluidic Chip. Beijing: Science Press, 2008:473.
  • 3Ismagilov R F, Song H, Tice J D. Angewandte Chemie-International Edition, 2003, 42(7) : 768-772.
  • 4Chan E M, Alivisatos A P, Mathies R A. J. Am. Chem. Soc. , 2005,127(40): 13854-13861.
  • 5Zhao X Z, Liu K, Ding H J, Liu J, Chen Y. Langmuir, 2006, 22(22) : 9453-9457.
  • 6Nisisako T, Totii T, Takahashi T, Takizawa Y. Advanced Materials, 2006, 18(9): 1152-1156.
  • 7Anderson D G, Xu Q B, Hashimoto M, Whitesides G M, Langer R. Small, 2009, 5(13) : 1575-1581.
  • 8Griffiths A D, Frenz L, Pauly M, E1 Harrak A, Begin C S, Baret J C. Angewandte Chemie-International Edition, 2008, 47(36): 6817-6820.
  • 9Lee A P, Hung L H, Choi K M, Tseng W Y, Tan Y C, Shea K J. LabChip, 2006,6(2): 174-178.
  • 10Kitamori T, Tokeshi M, Minagawa T. Anal. Chem. , 2000, 72(7) : 1711-1714.

共引文献34

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部