摘要
本文研究了一类奇异二阶边值问题u''+a(t)f(u)+b(t)g(u)=0,αu(0)-βu'(0)=0,γu(1)+δu'(1)=0的C1[0,1]的正解.在f和g同为超(次)线性和一个为超线性、一个为次线性的情形下均得到了 C1[0,1]正解存在的充分必要条件,推广和包含了一些已知结果.
This paper studies the C1[0, 1] positive solutions of a class of second-order boundary value problems u' + a(t)f(u) + b(t)g(u) = 0, u(0) - A necessary and sufficient condition for the existence of C1 [0, 1] positive solutions is obtained under the condition that f and g are all superlinear (sublinear), or one is superlinear, the other is sublinear, which generalizes and includes some known results.
出处
《系统科学与数学》
CSCD
北大核心
2001年第1期93-100,共8页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金
山东省自然科学基金