期刊文献+

精确测量系统的聚类准蒙特卡罗粒子滤波算法 被引量:3

A Cluster-based Quasi-Monte Carlo Particle Filter for Accurate Measurement System
下载PDF
导出
摘要 针对粒子滤波在精确测量系统中由于似然分布过于尖锐引起的失效问题,提出一种基于确定性准蒙特卡罗采样和聚类方法的粒子滤波算法,当判定重要性样本缺失时,利用聚类方法提取提议分布中的关键样本,在由关键样本构成的新的支撑集基础上,确定采样空间和繁殖样本个数,并采用准蒙特卡罗方法生成新的确定性样本序列,以获取有效样本,避免失效现象的发生。仿真实验表明,该算法在测量噪声较小的情况下,与一般粒子滤波算法相比,可以获得更为精确和稳定的状态估计。 Aiming at the particle filter' s inefficacy problem caused by narrow likelihood of accurate measurement system,a new particle filter with resampling step based on clustering and determination quasi-Monte Carlo is proposed.When importance samples are lost,the algorithm extracts key samples using clustering method,and then determines the number of spring-offs of them and sampling space according to the new support set composed of key samples.New particles are generated by QMC,in order to obtain more efficient samples and avoid the inefficacy phenomena.Simulations show that,compared to the general resampling step of particle filter,this algorithm obtains more accurate and steady state estimation.
出处 《信号处理》 CSCD 北大核心 2014年第2期127-134,共8页 Journal of Signal Processing
基金 国家自然科学基金项目(61175027) 国家青年科学基金项目(61305013) 中央高校基本科研业务费专项资金(HIT.NSRIF.2014071)资助
关键词 粒子滤波 准蒙特卡罗采样 聚类 精确测量 Particle filter Quasi-Monte Carlo sampling Cluster Accurate measurement
  • 相关文献

参考文献15

  • 1Gordon N. J. , Salmond D. J. , Smith A. F. Novel Ap- proach to Nonlinear/Non-Gaussian Bayesian State Estima- lion[C], lEE Proceedings F on Radar and Signal Pro- cessing. 1993, 140 (2): 107-113.
  • 2Doueet A. , Johansen A. M. A tutorial on particle filtering and smoothing: fifteen years later. Technical report, Depart- ment of Statistics, University of British Columbia. 21308.
  • 3邱天爽,夏楠,李景春,李书芳.稳定分布噪声下基于高斯近似粒子滤波的干扰源定位算法[J].信号处理,2012,28(9):1248-1253. 被引量:8
  • 4Bagdanov, A. D. Del Bimbo A., Dini Fabrizio, Nunziati W. Adaptive uncertainty estimation for particle filter- based trackers[ C ]. The 14th International Conference on hnage Analysis and Processing. 2007: 331-336.
  • 5Rui Y, Chen Y. Better proposal distributions: Object track- ing using unscented particle filter [ C ]. Proceedings of the 2001 IEEE Computer Society Colfference on Computer Vision and Pattern Recognition. 2001, 2: II-786-II-793.
  • 6Park S. , Hwang J. P. , Kim E. , Kang H-J. A New Evo- lutionary Particle Filter for the Prevention of Sample Im- poverishment [ J ]. IEEE Transactions on Evolutionary Computation. 2009, 13 (4) :801-809.
  • 7Han H. , Ding Y-S. , Hao K-R. A new immune particle filter alorithn for trackin a moving target [ C ]. 2010 Sixth International Conference on Natural Computation. 2010, 6: 3248-3252.
  • 8Park S. , Hwang J. , Rou K. , eta|. A new particle filter inspired by biological evolution : genetic filter [ J ]. Inter- national Journal of Applied Science Engineering and Technology ( S1307- 4318 ), 2007,4 ( 1 ) :459- 463.
  • 9Zhao J. , Li Z. Particle filter based on Particle Swarm Optimization resampling for vision tracking [ J ]. Expert Systems with Applications. 2010, 37(12) :8910-8914.
  • 10Havangi R., Nekoui M. A., Teshnehlab M. A Multi Swarm Particle Filter for Mobile Robot Localization [ J ]. International Journal of Computer Science Issues, 2010,7 (3) :15-22.

二级参考文献11

  • 1孔祥元 郭际明 刘宗泉.大地测量学基础[M].武汉:武汉大学出版社,2002..
  • 2Schmidt S. Advances in control systems, in Applica- tions of state space methods to navigation problems, C. T. Leondes, Ed [ M]. New York: Academic, 1966, pp.294-340.
  • 3Julier S J, and Uhlmann J K. Unscented filtering and nonlinear estimation [ J]. Proceedings of IEEE ,200d ,92 (3) :401-422.
  • 4Kim J,Vaddi S S,Menon P K, and Ohlmeyer E J. Com- parison between nonlinear filtering techniques for spiraling ballistic missile state estimation [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48 ( 1 ) : 313-328.
  • 5Ghirmai T, Bugallo M F, Miguez J, and Djuri6 P M. A se- quential Monte Carlo method for adaptive blind timeing estimation and data detection [J]. IEEE Transactions on Signal Processing,2005,53 ( 8 ) : 2855-2865.
  • 6Gustafsson F. Particle fiher theory and practice with posi- tioning applications [ J ]. IEEE A&E Systems Magzines, 2010,25(7) :53-81.
  • 7Scharcanski J, Oliveira A B, Cavalcanti P G and Yari Y. A particle-filtering approach for vehicular tracking adaptive to occlusions [ J ]. IEEE Transactions on Vehicular Tech- nology,2011,60(2) :381-389.
  • 8Liu J, and Chen R. Sequential Monte Carlo methods for dynamic systems [ J ]. Journal of the American Statistical Association, 1998,93 : 1032-1044.
  • 9Ng W, and So H C. Multiple-model based particle filters for frequency tracking in a-stable noise [ J ]. IEEE Transactions on Aerospace and Electronic Systems,2011, 47 ( 3 ) :2254-2261.
  • 10谭海峰,李景春.利用飞机散射信号查找干扰源的定位算法[J].无线电通信技术,2009,35(2):40-42. 被引量:8

共引文献7

同被引文献44

  • 1张颖,吴成东,原宝龙.机器人路径规划方法综述[J].控制工程,2003,10(z1):152-155. 被引量:66
  • 2鲁守银,钱庆林,张斌,王明瑞,李向东,王宏.变电站设备巡检机器人的研制[J].电力系统自动化,2006,30(13):94-98. 被引量:138
  • 3张卫明,张炎华,钟山.蒙特卡罗粒子滤波算法应用研究[J].微计算机信息,2007(01S):295-297. 被引量:13
  • 4Dan S. Optimal state estimation [M]. New York: John Wiley Sons, 2006.
  • 5. Dan S, Chia T L. Kalman filtering with state e- quality constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 : 128.
  • 6Dan S. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms [J]. lET Control Theory Appl, 2010, 4: 1303.
  • 7Geir E. The ensemble Kalman filter: theoretical formulation and practical implementation [J]. O- cean Dynamics, 2003, 53.. 343.
  • 8Stordal A S, Karlsen H A, Navdal G, et al. Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter [J]. Computational Geosciences, 2011, 15: 293.
  • 9Xu L F, Li X R. Modeling and state estimation for dynamic systems with linear equality constraints [J]. IEEE Transactions on Signal Processing, 2013, 61: 2927.
  • 10Yang C, Blasch E. Kalman filtering with nonlinearstate constraints [J]. IEEE Transactions on Aero- space and Electronic Systems, 2009, 45.. 70.

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部