期刊文献+

认知无线网络中基于非重构序贯压缩的随机信号检测算法与分析 被引量:6

Detection of Random Signal Based on Unreconstructed Sequential Compressive Sensing and its Analysis in Cognitive Wireless Network
下载PDF
导出
摘要 为避免失真,奈奎斯特定理规定采样频率不得低于信号最高频率的两倍。随着使用带宽的不断增加,所需高速采样速率在目前的技术水平下难以实现。压缩采样能够在远低于奈奎斯特采样速率的条件下较好地保持稀疏信号的结构和信息。已有文献均对已知信号进行讨论,针对稀疏度未知的随机信号检测问题,本文将压缩采样与序贯检测技术相结合,分别提出了基于单节点非重构序贯压缩和分布式协作非重构序贯压缩的随机信号检测算法,分析了新算法检测性能。理论分析与仿真结果表明:在保证性能的前提下,本文提出的方法显著减少了所需观测值数目,而且完全避免了复杂的信号重构,节省了时间开销,提高了检测的实时性。 In order to prevent signal distortion,according to the conventional Nyquist sampling theorem,the sampling rate should not be less than twice the Nyquist sampling rate.However,with the increasing use of bandwidth,high-speed sampling rate required is difficult to achieve under the current technology level.Compressive sampling can maintain the structure and information of the original sparse signal far below the Nyquist sampling rate.The existing literatures all discussed about the compressive detection of known signal.Focusing on the detection of sparse random signal,we propose a sequential compressive sensing scheme.Then we discuss the performance of detection and use it in distribute collaboration spectrum sensing.Theoretical analysis and simulation results show that sequential compressive detection can significantly save the number of measurements under a given detection performance.This algorithm reduces the detection time,and also avoids the reconstruction of original signal,of which computer complexity is very high.
出处 《信号处理》 CSCD 北大核心 2014年第2期205-213,共9页 Journal of Signal Processing
基金 国家自然科学基金(No.61102091) 国家自然基金(No.61301103)资助项目 江苏省博士后基金(12D1076C)资助项目 中央高校基本科研业务费专项资金(No.NS2012045)资助项目 通信信息控制和安全技术重点实验室基金(9140C13030111DZ4603)资助项目 解放军理工大学预研青年基金(KY63ZLXY1203)资助项目 江苏高校优势学科建设工程资助项目 江苏省自然科学基金青年基金(BK20130069)资助项目
关键词 压缩采样 序贯检测 随机信号 分布式协作感知 Compressive sampling Sequential detection Random signal Distribute collaboration sensing
  • 相关文献

参考文献3

二级参考文献107

  • 1BENEDETTO M D, KAISER T, MOLISH A F , et al. UWB communication systems: a comprehensive overview[M].New York, USA: Hindawi Publishing Corporation, 2006.
  • 2QIU R C, SCHOLTZ R A, SHEN X. Guest editorial special section on ultra-wideband wireless communications: a new horizon[J]. IEEE Trans on Veh Teehnol, 2005, 54(5) : 1525-1527.
  • 3BLAZQUEZ R, LEE F S, WENTZLOFF D D, et al. Digital architecture for an ultra-wideband radio receiver [C]//Proeeedings of IEEE VTC. Piscataway, NJ, USA: IEEE, 2003:1303-1307.
  • 4BARANIUK R. Compressive sensing [C]// Proceedings of Annual Conference on Information Sciences and Systems. Piscataway, NJ, USA: IEEE, 2008:1289-1306.
  • 5PAREDES J L, ARCE G R, WANG Zhongmin. Ultra-wideband compressed sensing: channel estimation [J]. IEEE Journal of Selected Topics in Signal Processing,2007,1(3) :383-395.
  • 6COHEN A, DAHMEN W, DEVORE R. Compressed sensing and best k-term approximation [J]. Journal of the American Mathematical Society, 2009, 22 (1) : 211- 231.
  • 7DONOHO D L. For most large underdetermined systems of equations, the minimal ll-norm near-solution approximates the sparsest near-solution [J]. Communications on Pure and Applied Mathematics, 2006, 59 (7) ; 907-934.
  • 8HAUPT J, NOWAK R. Signal reconstruction from noisy random projections [J].IEEE Trans on Inform Theory, 2006, 52(9): 4036-4048.
  • 9CANDES E J, WAKIN M B. An introduction to compressive sampling [J].IEEE Signal Processing Magazine, 2008, 25(2):21-30.
  • 10BAJWA W U, HAUPT J, RAZ G, et al. Toeplitz- structured compressed sensing matrices[C] // Proceedings of IEEE SSP'07. Piscataway, NJ,USA: IEEE, 2007 : 294-298.

共引文献70

同被引文献56

  • 1Foucart S, Rauhut H. A Mathematical Introduction to Compressive Sensing[M]. New York: Springer, 2013.
  • 2Rubinstein R, Peleg T, Elad M. Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model[J]. IEEE Transactions on Signal Processing, 2013, 61 (3) : 661-677.
  • 3Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007 , 55 ( 12) : 5695-5702.
  • 4JinJ, Gu Y, Mei S. A Stochastic Gradient Approach on Compressive Sensing Signal Reconstruction Based on Adaptive Filtering Framework[J]. IEEEJournal of Selected Topics in Signal Processing, 2010, 4(2): 409-420.
  • 5Sun H, Nallanathan A, Wang C, et al. Wideband Spectrum Sensing for Cognitive Radio Networks: A Survey[J]. IEEE Wireless Communications, 2013, 6 (4) : 74- 8l.
  • 6Baraniuk R G. More is Less: Signal Processing and the Data Deluge[J]. Science, 2011, 331 (2) : 717-719.
  • 7Malioutov D M, Sanghavi S R, Willsky A S. Sequential Compressed Sensing[J]. IEEEJournal of Selected Topics in Signal Processing, 2010, 4(2): 435-444.
  • 8Sun H, Chiu W, Nallanathan A. Adaptive Compressive Spectrum Sensing for Wideband Cognitive Radios[J]. IEEE Communications Letters, 2012,16(11): 1812-1815.
  • 9Ward R. Compressed Sensing With Cross Validation[J] . IEEE Transactions on Information Theory, 2009, 55 ( 12) : 5773-5782.
  • 10Wang Y, Tian Z, Feng C. Sparsity Order Estimation and its Application in Compressive Spectrum Sensing for Cognitive Radios[J]. IEEE Transactions on Wireless Communications, 2012, 11(6): 2116-2125.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部