期刊文献+

LCL-FRESH滤波器实现单通道盲源分离 被引量:9

Single-channel Blind Source Separation Achieved by the LCL-FRESH Filter
下载PDF
导出
摘要 在无线频谱检测及军事侦察的接收机中存在时频重叠信号,利用时频域滤波及常规盲源分离方法很难实现该信号的分离和信息提取。针对此问题,本文根据单通道时频重叠调制信号在循环谱域具有独立性和稀疏性的特点,提出了一种通过循环谱域滤波器来实现两路源信号分离的方法:采用周期图法对一调制信号进行循环谱估计,得到该调制信号具有最强谱相关特性的循环频率点θ;再将θ作为LCL-FRESH滤波器的频移量从单通道时频重叠信号中提取出具有该循环频率的调制信号。最后,在MATLAB环境下对混有白噪声的QPSK和BPSK两路时频重叠信号进行仿真验证,结果表明该方法可有效分离出两路源信号。 Time-frequency overlapped signals existing in the wireless spectrum detection and military reconnaissance receiver,which are difficult to be separated and extracted information by using the time-frequency domain filter and conventional blind source separation method.According to the independence and sparsity of single-channel time-frequency overlapped modulation signal in cyclic spectral domain,a new method is proposed to achieve two source signals separation through the cyclic spectrum domain filter in this paper.This method can be stated as follows:Firstly,the cyclic frequency θ is found through the cyclic frequency estimation by the periodogram,where the modulated signal has the maximum spectral correlation,using θ as frequency shift of the LCL-FRESH filter,the modulated signals with the cyclic frequency θ are extracted from single-channel time-frequency overlapped signal by a filter.Then,time-frequency overlapped QPSK/BPSK signal adding white noise is simulated in the MATLAB environment.The result indicates that the two source signals can be separated effectively with this method.
出处 《信号处理》 CSCD 北大核心 2014年第2期236-242,共7页 Journal of Signal Processing
基金 国家自然科学基金(61265003)
关键词 线性共轭线性频移滤波器 周期图 盲源分离 Linear-Conjugate-Linear frequency Shift filter Periodogram Blind source separation
  • 相关文献

参考文献10

  • 1付海涛.基于循环平稳的单信道时频重叠信号分析[D]成都:电子科技大学通信与信息工程学院,2009.
  • 2赵晓迪.基于谱分析的通信信号调制识与参数估计研究[D]成都:西南交通大学信息科学与技术学院,2007.
  • 3张仔兵,李立萍,肖先赐.MPSK信号的循环谱检测及码元速率估计[J].系统工程与电子技术,2005,27(5):803-806. 被引量:44
  • 4Kevin T.S,Tomas E.W,Sean F.M. Artifact Removal in Physiological Signals-Practices and Possibilities[J].{H}IEEE Transactions on Information Technology in Biomedicine,2012,(03):488-500.
  • 5Kevin T.S,Hasan A. A Methodology for Validating Artifact Removal Techniques for Physiological Signals[J].{H}IEEE Transactions on Information Technology in Biomedicine,2012,(05):918-926.
  • 6Liu Ming,Matthieu C. A Novel Data-Aided Channel Estimation with Reduced Complexity for TDS-OFDM Systems[J].{H}IEEE Transactions on Broadcasting,2012,(02):247-260.
  • 7Gardner W.A. Cyclic Wiener Filtering:Theory and Method[J].IEEE Trans On Communication VOL,1993,(01):151-163.
  • 8邱天爽,毕晓辉.稀疏分量分析在欠定盲源分离问题中的研究进展及应用[J].信号处理,2008,24(6):966-970. 被引量:15
  • 9张丽辉,邱天爽,李景春,谭海峰.一种基于四阶循环累积量的盲源分离方法[J].信号处理,2011,27(9):1412-1415. 被引量:5
  • 10蔡权伟,魏平,肖先赐.单信道多信号分量分离[J].通信学报,2006,27(6):49-56. 被引量:11

二级参考文献44

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2尹忠科,邵君,Pierre Vandergheynst.利用FFT实现基于MP的信号稀疏分解[J].电子与信息学报,2006,28(4):614-618. 被引量:25
  • 3张跃飞,姜玉亭,王建英,尹忠科.基于稀疏分解的图像压缩[J].系统工程与电子技术,2006,28(4):513-515. 被引量:11
  • 4徐尚志,苏勇,叶中付.欠定条件下的盲分离算法[J].数据采集与处理,2006,21(2):128-132. 被引量:8
  • 5S. S. Chen, D. L. Donoho, M. A. Saunders, Atomic decomposition by basis pursuit, SIAM J. Science Computation, 1998,20( 1 ) ,33-61.
  • 6B. A. Olshausen, P. Sallee, M. S. Lewicki, Learning sparse image codes using a wavelet pyramid architecture, Advances in Neural Information Processing Systems, 2001, 13,887-893.
  • 7K. K. Delgado, J. F. Murray, B. D. Rao et al, Dictionary learning algorithms for sparse representation, Neural Computation, 2003,15,349 -396.
  • 8D. L. Donoho, M. Elad, Optimally sparse representation via 11 minimization. Processing, National Academy Science, 2003,100,2197-2202.
  • 9Y. Li, A. Cichocki, S. Amari, Analysis of Sparse Representation and Blind Source Separation, Neural Computation, 2004,16,1193-1234.
  • 10H. Asari, B. A. Pearlmutter, A. M. Zador, Sparse Representations for the Cocktail Party Problem,The Journal of Neuroscience, July 12,2006,26 (28) ,7477-7490.

共引文献69

同被引文献76

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部