期刊文献+

基于网络药理学的抗肿瘤药物发现策略 被引量:14

Network pharmacology-based strategy for antitumor drug discovery
下载PDF
导出
摘要 肿瘤是受到遗传和环境因素影响的系统性疾病,传统的"一病一靶"的药物研发和治疗方式效果不尽人意。网络药理学是近年来新兴的基于"整体论"的新药研发策略,通过网络构建与分析,可为抗肿瘤新药研发提供新的手段和方法。本文简要介绍将网络药理学研究手段用于药物研究的基本概念,并探讨网络药理学在抗肿瘤药物设计、新靶点发现、药物联用设计等方面的应用。随着系统生物学、计算生物学等相关学科的快速发展,网路药理学将在揭示新的肿瘤治疗靶标、治疗药物组合规律以及耐药性的潜在机制等方面为我们提供重要帮助。 Cancer is increasingly being accepted as a systemic disease built on interacting networks arising from genes, mRNAs, microRNAs and proteins. Traditional “one drug/one target” theory-based treatment has largely been a failure. Instead of traditional reductionist biology, there is an increasing acceptance of holism in biological predictions and interpretations, and consequently the emerging concept of "Network Pharmacology" in drug discovery. In this paper, some important concepts in network methods that are helping hit identification, lead selection, and optimizing drug efficacy are discussed. We believe that with the progress in system biology and computational biology, the application of network-based drug design based on rationalized therapies to cancer treatment will benefit drug discovery more extensively and deeply in the future.
出处 《国际药学研究杂志》 CAS CSCD 2014年第1期1-5,共5页 Journal of International Pharmaceutical Research
基金 国家"重大新药创制"科技重大专项资助项目(2012ZX09301003-001)
关键词 肿瘤 网络药理学 新药研发 neoplasmas network pharmacology new drug development
  • 相关文献

参考文献21

  • 1Azmi AS. Adopting network pharmacology for cancer drug discov- ery[J]. Curr Drug Discov Technol, 2013, 10(2):95-105.
  • 2Csermely P, Korcsmaros T, Kiss H J, et al. Structure and dy- namics of molecular networks: a novel paradigm of drug discovery :a comprehensive review [ J ]. Pharmacol Ther, 2013, 138(3) :333-408.
  • 3Radhakrishnan ML, Tidor B. Specificity in molecular design: a physical framework for probing the determinants of binding speci- ficity and promiscuity in a biological environment [ J ]. J Phys Chem B, 2007, 111 ( 47 ) : 13419 -13435.
  • 4Hann MM, Leach AR, Harper G. Molecular complexity and its impact on the probability of finding leads for drug discovery[ J]. J Chem lnf Comput Sci, 2001,41 (3) :856-864.
  • 5Awan A, Bail H, Yan F, et al. Regulatory network motifs and hotspots of cancer genes in a mammalian cellular signalling net- work[J]. 1ETSyst Biol, 2007, 1 (5) :292-297.
  • 6Pawson T, Linding R. Network medicine[J]. FEBSLett, 2008, 582 (8) : 1266-1270.
  • 7Li L, Tibiche C, Fu C, et al. The human phosphotyrosine signa- ling network : evolution and hotspots of hijacking in cancer [ J ]. Genome Res, 2012, 22(7) :1222-1230.
  • 8Schoeberl B, Pace EA, Fitzgerald JB, et al. Therapeutically tar- geting ErbB3: A key node in ligand-induced activation of the ErbB receptor PI3 K axis[ J]. Sci Signal, 2009, 2 (77) : ra31. Jonsson PF, Bates PA. Global topological features of cancer pro- teins in the human interactome [ J ]. Bio.
  • 9informatics, 2006, 22 ( 18 ) :2291-2297.
  • 10Xia J, Sun J, Jia P, et al. Do cancer proteins really interact strongly in the human protein-protein interaction network? [ J ]. Comput Biol Chem, 2011, 35(3) :121-125.

同被引文献195

引证文献14

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部