摘要
In this paper,we consider the high order singular boundary value problems: u (n) (t)+a(t)f(u(t))=0, 0<t<1, u (k) (0)=u(1)=0,0kn-2. Where, a(t)∈c(0,1) and a(t)>0,t∈(0,1). a(t) may be singular at t=0,t=1. f(u)∈c[0,+∞) and f(u)0. n is positive integer and n2. When f(u) satisfies the superlinear and sublinear conditions,we give the sufficient conditions to the existence of the positive solution.
基金
.NULL.