期刊文献+

Investigation on the Percutaneous Enhancing Permeation Mechanism of Azone for Ketoprofen Based on the Intermolecular Hydrogen-bonding Interaction

Investigation on the Percutaneous Enhancing Permeation Mechanism of Azone for Ketoprofen Based on the Intermolecular Hydrogen-bonding Interaction
下载PDF
导出
摘要 The permeation enhancing activity of Azone for ketoprofen through excised cavia skins was investigated using Franz diffusion cell. The possible hydrogen-bonded complexes formed between ketoprofen and the model molecule of Azone as azacyclopentane-2-one were fully optimized at the B3LYP/6-311++G** level. The intermolecular hydrogen-bonding interactions were calculated using the B3LYP/6-311++G**, B3LYP/6-311++G(2df, 2p), MP2(full)/6-311++G** and MP2(full)/6-311++G(2df, 2p) methods, respectively. The results show that the steady-state permeation rate of ketoprofen through excised cavia skins enhances over 9 times in the solvent with 2% Azone as compared with the solvent without Azone. The stable O–H…O=C and N–H…O=C hydrogen-bonded complexes could exist between azacyclopentane and ketoprofen. The hydrogen-bonding interaction energy follows the order of(a) 〉(b) 〉(c) 〉(d) 〉(g)〉(e) 〉(h) 〉(f). The formation of the complexes leads to the change of the conformation and molecular polarity of ketoprofen, and thus causes a better percutaneous permeation for the drug. The analyses of AIM(atom in molecule) and shift of electron density were used to further reveal the nature of the enhancing permeation activity of Azone for ketoprofen. The investigations of the temperature and solvent effects confirm that ketoprofen might enter into the skin by means of the Azone complex. The permeation enhancing activity of Azone for ketoprofen through excised cavia skins was investigated using Franz diffusion cell. The possible hydrogen-bonded complexes formed between ketoprofen and the model molecule of Azone as azacyclopentane-2-one were fully optimized at the B3LYP/6-311++G** level. The intermolecular hydrogen-bonding interactions were calculated using the B3LYP/6-311++G**, B3LYP/6-311++G(2df, 2p), MP2(full)/6-311++G** and MP2(full)/6-311++G(2df, 2p) methods, respectively. The results show that the steady-state permeation rate of ketoprofen through excised cavia skins enhances over 9 times in the solvent with 2% Azone as compared with the solvent without Azone. The stable O–H…O=C and N–H…O=C hydrogen-bonded complexes could exist between azacyclopentane and ketoprofen. The hydrogen-bonding interaction energy follows the order of(a) 〉(b) 〉(c) 〉(d) 〉(g)〉(e) 〉(h) 〉(f). The formation of the complexes leads to the change of the conformation and molecular polarity of ketoprofen, and thus causes a better percutaneous permeation for the drug. The analyses of AIM(atom in molecule) and shift of electron density were used to further reveal the nature of the enhancing permeation activity of Azone for ketoprofen. The investigations of the temperature and solvent effects confirm that ketoprofen might enter into the skin by means of the Azone complex.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第2期304-318,共15页 结构化学(英文)
基金 Supported by Natural Science Foundation of Shanxi Province(No.2012011007-5) the application and innovation project in police(No.2011YYCXSXST016)
关键词 intermolecular hydrogen-bonding interaction AZONE ketoprofen transdermal delivery MP2 intermolecular hydrogen-bonding interaction, Azone, ketoprofen,transdermal delivery, MP2
  • 相关文献

参考文献3

二级参考文献16

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部