期刊文献+

Levy噪声扰动的混合随机微分方程的Euler近似解 被引量:1

Euler approximated solutions of hybrid stochastic differential equations perturbed by Levy noise
下载PDF
导出
摘要 研究了Levy过程扰动的Markov状态转换的随机微分方程的Euler近似解,在非Lipschitz条件下,证明了Euler近似解均方意义下收敛于解析解,从而推广了已有的某些结果. The Euler approximated solutions of stochastic differential equations with Markovian switching driven by Levy process are studied.The convergence of the Euler approximated solutions to the analytical solutions in the mean-square sense under non Lipschitz conditions is obtained.Some known results are generalized and improved.
作者 毛伟
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2014年第1期1-6,共6页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(11102076 11202085) 江苏省高等学校自然科学研究项目(13KJB110005) 院级重点课题项目(Jsie2011zd04) 江苏省青蓝工程项目(2012) 江苏省政府留学奖学金项目
关键词 随机微分方程 Markov状态转换 Levy跳 Euler近似解 非LIPSCHITZ条件 stochastic differential equations Markovian switching Levy jumps Euler approximated solutions non-Lipschitz conditions
  • 相关文献

参考文献8

  • 1Mao X,Yuan C.Stochastic Differential Equations with Markovian Switching[M].London.:Imperial College Press,2006.
  • 2Yuan C,Mao X.Convergence of the Euler-Maruyama method for stochastic differential equations with Markovian switching[J].Mathematics Computers Simulation,2004,64:223-235.
  • 3Mao X,Yuan C,Yin G.Numerical method for stationary distribution of stochastic differential equations with Markovian switching[J].J Comput Appl Math,2005,174:1-27.
  • 4叶俊,李凯.带Markov状态转换的跳扩散方程的数值解[J].数学学报(中文版),2011,54(5):823-838. 被引量:2
  • 5Mao X.Stability of stochastic differential equations with Markovian switching[J].Stocha Process Appl,1999,79:45-67.
  • 6Higham D,Mao X,Yuan C.Preserving exponential meansquare stability in the simulation of hybrid SDEs[J].Numer Math,2007,108:295-325.
  • 7Ikeda N,Watanable S.Stochastic Differential Equations and diffusion processes[M].Amsterdam:North-Holl,1989.
  • 8Bihari I.A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations[J].Acta Math Acad Sci Hungar,1956,7:71-94.

二级参考文献21

  • 1Gershwin S. B., Hierarchical flow control: a framework for scheduling and planning discrete events in manufacturing systems, Proc. IEEE, 1979, 77:195 209.
  • 2Labeau P. E., Smidts C., Swaminathan S., Dynamic reliability: towards an integrated platform for probabilistic risk assessment, Reliability Engineering and System Safety, 2000, 68:219 254.
  • 3Tomlin C., Pappas G., Sastry S., Conflict resolution for air traffic management: a case study in multi-agent hybrid systems, IEEE Tr. Automatic Control, 1998, 14:509 521.
  • 4Willsky A. S., Levy B. C., Stochastic stability research for complex power systems, DOE Contract, LIDS, MIT, Rep., ET-76-C-01-2295, 1979.
  • 5Buffington J., Elliott R. J., American options with regime switching, International Journal of Theoretical and Applied Finance, 2002, 5:497 514.
  • 6Yao D. D., Zhang Q., Zhou X. Y., A Regime-Switching Model for European Options, In: Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, (Yan H., Yin G., Zhang Q. ed.), New York: Springer, 2006, 281-300.
  • 7Arapostathis A., Ghosh M. K., Marcus S. I., Optimal control of switching diffusions with application to flexible manufacturing systems, SIAM J. Control Optim., 1993, 31:1183 1204.
  • 8Bruti-Liberati N., Platen E., Strong approximations of stochastic differential equations with jumps, J. Comput. Appl. Math., 2007, 205:982 1001.
  • 9Higham D. J., Kloeden P. E., Numerical methods for nonlinear stochastic differential equations with jumps, Numerische Mathematik, 2005, 101:101 119.
  • 10Kloeden P. E., Platen E., Numerical Solution of Stochastic Differential Equations, New York: Springer-Verlag, 1992.

共引文献1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部