摘要
讨论了如下四阶半线性椭圆型问题{Δ2 u+mΔu=f(x,u),x∈Ω,u=Δu=0,x∈Ω多解的存在性.其中函数f(x,t)关于t在无穷远点处具有渐近线性性;Ω是RN中的有界光滑区域且N>4.很容易验证,f(x,t)不满足著名的Ambrosetti-Rabinowitz型条件,简称(AR)条件,即t1■θ>0,M>0,使得0<F(x,t)■∫f(x,s)ds≤f(x,t)t对a.e.x∈Ω和|t|≥M都02+θ一致成立.由于此条件在山路引理的运用之中非常重要,故该文选择了山路引理的另一种表示形式,进而证明了当f(x,t)满足适当条件的情形下,上述问题存在着多重的非零解.
The paper discusses the existence of multiple solutions for the following fourth-order semilinear elliptic problem {△2u+m△u=f(x,u),x(E)Ω,u=△u=0,x(E) (a)Ω,where f(x,t) is asymptotically linear with respect to t at infinity.Ω (E) RN is a smooth bounded domain and N > 4.It is easy to verify that f(x,t) does not satisfy the famous Ambrosetti-Rabinowitz type condition (for short,(AR) condition),i.e.(E) θ > 0,M > 0,such that 0 < F(x,t) (△)∫10f(x,s)ds≤1/2+θf(x,t)t uniformly for a.e.x (E) Ω and (V) |t| ≥ M.By a variant version of Mountain Pass Theorem,we show that the problem has multiple solutions under suitable assumptions of f(x,t).
出处
《华中师范大学学报(自然科学版)》
CAS
北大核心
2014年第1期7-11,共5页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(10901126)
武汉科技大学青年科技骨干培养计划项目(2012XZ017)
关键词
四阶半线性椭圆型问题
山路引理
渐近线性性
多重非零解
fourth-order semilinear elliptic problem
Mountain Pass Theorem
asymptotically linear
multiple solutions