期刊文献+

通道型电磁常闭微阀结构参数优化 被引量:1

Optimization of structure parameters of channel-type electromagnetic microvalves
下载PDF
导出
摘要 优化了通道型电磁常闭微阀的结构参数,以提高其工作性能。基于近似结构模型对结构参数进行理论分析;以泄漏率为指标,利用有限元方法仿真分析了微通道的宽度、高度,底膜厚度,顶膜厚度及电磁驱动机构压力等主要结构参数对泄漏率的影响。提取了经验公式,基于正交实验法研究了结构参数对泄漏率和开启率的影响。最后,结合理论分析、仿真和正交实验结果对微阀结构参数进行了优化。实验结果表明,通道高度和宽度对泄漏率影响最大,通道高度对开启率影响最大。获得最优开闭性能的结构参数组合为:通道宽度1 mm,高度0.1 mm,底膜厚度0.2 mm,顶膜厚度0.2mm,电磁机构压力3×104 Pa。基于该结构参数组合的微阀在10kPa内可以实现零泄漏及近似完全开启。该阀具有易与微流控芯片集成、低电压驱动、制作简单、无死体积等优点。 The structure parameters of a channel-type electromagnetic normally-closed microvalve were optimized to improve its performance.Firstly,the structure parameters were analyzed theoretically based on an approximate structure model.The impacts of main structure parameters on the leakage rate,such as the width and height of a microchannel,the thicknesses of bottom and top films,and the pressure generated by a electromagnetic mechanism were analyzed based on the Finite Element Simulation(FES),and then a empirical formula was established.On the orthogonal experiment method,the influences of the structure parameters on the leakage rate and the open rate were also researched.Finally,the structure parameters of the microvalve were optimized according to the theoretical analysis,FES and the experiment results.The experimental results show that the width and height of the microchannel have the effect on the leakage rate greatly,and the channel height effects on the open rate most.Furthermore,the optimal structure parameters of the microvalve are the width and height to be 1 mm and 0.1 mm,the bottom and top film thicknesses both to be 0.2 mm,and the pressure to be 3 × 104 Pa,respectively.On the parameters mentioned above,the microvalve has no detectable leakage flow when the backpressure is up to 10 kPa.The microvalve shows its advantages on the low-voltage driving,zero dead volume,simple process and easy to integrate with microfluidic devices.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第2期406-413,共8页 Optics and Precision Engineering
基金 "十一五"国家科技支撑重大专项资助项目(No.2009BAK59B02) 航天医学基础与应用国家重点实验室重点项目(No.SMFA11A02 No.SMFA13A03)
关键词 电磁微阀 结构参数 泄漏率 仿真 正交实验 electromagnetic microvalve structure parameter leakage rate simulation orthogonal experiment
  • 相关文献

参考文献12

  • 1KWANG W O, CHONG H A. A review of microv- alves[J]. Journal of Micromechanics and Micro- engineering, 2006, 16: 13-39.
  • 2KWANG W O, RONG R, CHONG H A. Minia- turization of pinch type valves and pumps for practi- cal micro total analysis system integration [J]. Journal of Micromechanics and Microengineering, 2005, 15:2449-2455.
  • 3TAO L, ALLAN T, EVANS S C, etal. Com- pact, power efficient architectures using microv- alves and microsensors, for intrathecal, insulin, and other drug delivery systems [J]. Adwanced Drug Deliwery Reviezvs, 2012, 64 : 1639-1649.
  • 4KAZUSHI Y,SHUJI T,YOSUKE H, et aL. Nor mally closed electrostatic microvalve with pressure balance mechanism for portable fuel cell application[J]. Sensors and Actuators A, 2010, 157: 299- 306.
  • 5FENG G H, CHOU Y C. Fabrication and charac terization of thermally driven fast turwon microv alve with adjustable baekpressure design[J]. Mi croelectronic Engineering, 2011, 88 : 187-194.
  • 6SIMONE G,PEROZZIELLO G, SARDELLA G, et al: A microvalve for hybrid microfluidic systems [J]. Microsyst Technol, 2010, 16:1269-1276.
  • 7NEUMANN C, VOIGT A,PIRES L. Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves [J]. Micro.fluid Nanofluid, 2013,14:177 186.
  • 8赵明丽,黄琴,张玮,李欣欣.悬臂梁阀单腔压电泵设计方法研究[J].光学精密工程,2006,14(4):607-611. 被引量:5
  • 9杜新,张平,刘永顺,吴一辉.基于PDMS和玻璃材料的毛细管被动阀临界压力分析[J].光学精密工程,2011,19(8):1852-1858. 被引量:7
  • 10SHI L J, TAN Y J, DONGJ X, etal: Design and optimization of an electromagnetic microvalve for portable cell culture bioehips[J]. The 3rd In- ternational Conference on Advances in Micro flu- idics and Nanofluidics, 2012: 62-64.

二级参考文献21

  • 1王毅,常小庆.微重力环境下推进剂贮箱中三维气液平衡界面的数值模拟[J].火箭推进,2007,33(3):31-35. 被引量:5
  • 2张也影.流体力学[M].北京:北京理工大学出版社,1985.325.
  • 3DUCREE J, HAEBERLE S, LUTZ S, etal.. The centrifugal microfluidic Bio-Disk platform[J]. Mi- cromech. Microeng. , 2007,17 (7) :103-115.
  • 4SIEGRIST J,GORKIN R,CLIME L, et al.. Serial siphon valving for centrifugal microfluidic platforms [J]. Micro fluid Nanofluid. , 2010,9(1) :55-33.
  • 5GLIERE A, DELATTRE C. Modeling and fabrica- tion of capillary stop valves for planar microfluidic systems[J]. Sens. Actuators A : Phys. , 2006,130- 131 :601-608.
  • 6MAN P F, MASTRANGELO C H, BURNS M A, et al.. Microfabricated capillary driven stop valves and sample injector, in: MEMS Conference, Hei- delberg, Germany, January 25-29, 1998.
  • 7LEU T S, CHANG P Y. Pressure barrier of capil-lary stop valves in micro sample separators EJ~- Sens. Actuators A: Phys. , 2004, 115 (2-3) : 508- 515.
  • 8CHEN J M, HIANG P C, LIN M G. Analysis and experiment of capillary valves for microfluidics on a rotating disk[J]. Micro fluid Nano fluid , 2008,4 (5) :427-437.
  • 9CHO H, KIM H Y, KANGJ Y, et al.. How the capillary burst microvalve works[J]. J. Colloid In- terface Sci. ,2007,306(2):379-385.
  • 10ZENG J, BANERJEE D, DESHPANDE M, et al.. Design analysis of capillary burst valves in centrifugal microfluidics[C]. Micro Total Analysis Systems 2000, Enschede : Kluwer Academic Publishers, 2000: 579- 582.

共引文献68

同被引文献12

  • 1夏伟强,樊尚春,邢维巍,刘长庭,王俊锋,李天志.空间细胞生物学研究的新进展[J].航天器环境工程,2010,27(6):784-794. 被引量:4
  • 2MATTHIAS M, SAVAS T. Microfluidic cell culture [J]. Current Opinion in Biotechnology, 2014, 25: 95-102.
  • 3GAO D, LIU H X, JIANG Y Y, et al. Recent developments in microfluidic devices forin vitro cell culture for cell-biology research [J]. Trends in Analytical Chemistry, 2012, 35: 150-164.
  • 4KIM J, TAYLOR D, AGRAWAL N, et al. A programmable microfluidic cell array for combinatorial drug screening [J]. Lab Chip, 2012, 12, 1813-1822.
  • 5KENICHI F, IOANNIS K. Z, LIU Y C, et al. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment[J]. Lab Chip, 2012, 12, 4855-4863.
  • 6STEFANO G, ENRICO M, LIA P, et al. Optimal periodic perfusion strategy for robust longterm microfluidic cell culture [J]. Lab Chip, 2013, 13, 4430-4441.
  • 7PEDER S P, METTE H, DAVID S, et al. A self-contained, programmable microfluidic cell culture system with real-time microscopy access [J]. Biomed Microdevices, 2012, 14:385-399.
  • 8HUANG CH W, LEE G B. A microfluidic system for automatic cell culture [J]. Journal of Micromechanics and Microengineering, 2007, 17:1266-1274.
  • 9施镠佳, 谭映军, 董景新, 等. 一种集成化微流控细胞培养芯片及其制备方法[R]. 中国: CN103667054A, 2014-03-26.
  • 10CAO J, USAMI SH, DONG CH. Development of a side-view chamber for studying cell-surface adhesion under flow conditions [J].Annals of Biomedical Engineering, 1997, 25: 573-580.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部