期刊文献+

基于萤火虫算法的二维熵多阈值快速图像分割 被引量:83

Fast image segmentation with multilevel threshold of two-dimensional entropy based on firefly algorithm
下载PDF
导出
摘要 提出了基于萤火虫算法的二维熵多阈值快速图像分割方法以改善分割复杂图像和多目标图像时存在计算量大、计算时间长的问题。首先,分析了二维熵阈值分割原理,将二维熵单阈值分割扩展到二维熵多阈值分割。然后,引入萤火虫算法的思想,研究了萤火虫算法的仿生原理和寻优过程;提出了基于萤火虫算法的二维熵多阈值快速图像分割方法。最后,使用该方法对典型图像进行阈值分割实验,并与二维熵穷举分割法、粒子群算法(PSO)二维熵多阈值分割法进行比较。实验结果表明:该方法在单阈值分割、双阈值分割和三阈值分割时分别比二维熵穷举分割法快3.91倍,1040.32倍和8128.85倍;另外,在阈值选取的准确性和计算时间方面均优于PSO二维熵多阈值分割法。结果显示,基于萤火虫算法的二维熵多阈值快速图像分割方法能快速有效地解决复杂图像和多目标图像的分割问题。 A fast image segmentation method with multilevel threshold of two-dimensional entropy was proposed based on the firefly algorithm to overcome the large amount of calculation and long computing time.Firmly,the principle of two-dimensional entropy threshold segmentation was analyzed,and the single threshold segmentation of two-dimensional entropy was extended to multilevel threshold segmentation.Then,the bionic mechanism and searching optimization process of the firefly algorithm were analyzed,and the multilevel threshold segmentation method of two-dimensional entropy combined with firefly algorithm was proposed.Finally,typical image segmentation experiments by using the proposed method were performed and the results were compared with those of two-dimensional entropy exhaustive segmentation method and the multilevel threshold segmentation method of two-dimensional entropy based on Particle Swarm Optimization(PSO).Experimental results show that the speeds of the proposed method in single threshold segmentation,dual-threshold segmentation and the three threshold segmentation are 3.91,1 040.32 and 8 128.85 times faster than those of the two-dimensional entropy exhaustive segmentation method respectively.Moreover,the threshold selection accuracy and running speed of the proposed method are both better than those of the multilevel threshold segmentation method of two-dimensional entropy based on PSO.Therefore,the fast image segmentation method with multilevel threshold of two dimensional entropy based on firefly algorithm can quickly and efficiently resolve complex and multi-target image segmentation problems.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第2期517-523,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50805023) 江苏省"六大人才高峰"资助项目(No.2008144) 江苏省科技支撑计划资助项目(No.BE2008081) 数字制造与装备技术国家重点实验室开放基金资助项目(No.DMETKF2008014)
关键词 图像分割 多阈值分割 二维熵 萤火虫算法 image segmentation multilevel threshold segmentation two-dimensional entropy fireflyalgorithm
  • 相关文献

参考文献11

  • 1程万胜,臧希喆,赵杰,蔡鹤皋.面向Otsu阈值搜索的PSO惯性因子改进方法[J].光学精密工程,2008,16(10):1907-1912. 被引量:13
  • 2何志勇,孙立宁,黄伟国,陈立国.基于Otsu准则和直线截距直方图的阈值分割[J].光学精密工程,2012,20(10):2315-2323. 被引量:35
  • 3张怀柱,向长波,宋建中,乔双.改进的遗传算法在实时图像分割中的应用[J].光学精密工程,2008,16(2):333-337. 被引量:25
  • 4KAPUR J N. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics, and Image Pro cessing, 1985, 29(3):273-285.
  • 5BRINK A D. Thresholding of digital images using Two-dimensional entropies [J].Patlern Recogni- tion, 1992, 25(8): 803-808.
  • 6PEDRAMG, M1CAELSC, JONAB, eta&. Anef ficient method for segmentation of images based on fractional calculus and natural selecfion[J]. Erpert Systems uitk AppZications, 2012, 89: 12407-12417.
  • 7HORNG M H. Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization [J]. E.cpert System with Applica- tions, 2010, 37(6):4580-4592.
  • 8I.AN J H,ZENG Y L. Multi-threshold image seg- mentation using maximum fuzzy entropy based on a new 2D histogram [J]. Optilelnt. J. Ligkt Elec- tron Opt. , 2013,124(18):3756-3760.
  • 9YANG X SH. Firefly algorithms for multimodal optimization [C]. In Stochastic Algorithms Foun- dations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, 2009, 5792:169-178.
  • 10LUKASIK S, ZAK S. Firefly algorithm for con tinuous constrained optimization tasks [C]. Com- putational Col&ctive Intelligence. Semantic Web, Social Netzvorks and Multiagent Systems Lecture Notes in Computer Science, 2009, 5796:97-106.

二级参考文献35

共引文献67

同被引文献808

引证文献83

二级引证文献593

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部