期刊文献+

多模型多传感器标量加权信息融合 被引量:1

Multi-model multi-sensor information fusion weighted by scalars
下载PDF
导出
摘要 随着生产系统越来越复杂,多传感器的应用也越来越广泛。本文基于标量加权的线性最小方差最优信息融合算法,针对多模型多传感器离散线性随机系统,给出了一种分布式标量加权信息融合Kalman滤波器。它只需要计算标量加权系数,可减小在融合中心的计算负担,并通过仿真例子验证算法的有效性。 Abstract: As production systems become more complex, multi-sensor applications also tend to be more extensive. Based on the optimal information fusion algorithm weighted by scalars in the linear minimum variance sense, a distributed information fusion fixed-lag Kalman filter predictor smoother weighted by scalars is given for discrete linear stochastic system with multiple model and multiple sensors. It only requires for the computation of scalar weights. So the calculated burden in the fusion center can be reduced. A simulation example shows its effectiveness.
出处 《黑龙江科学》 2014年第1期9-11,共3页 Heilongjiang Science
关键词 多模型多传感器系统 标量加权融合准则 KALMAN滤波 Key words: System with multiple models and multiple sensors fusion criterion weighted by scalars Kalman filter
  • 相关文献

参考文献6

  • 1BAR--SHALOM Y. On the track-to-track correlation problem[J].IEEE Transactions on Automatic Control,1981,(02):571-572.
  • 2KIM K H. Development of track to track fusion algorithm[A].Troy:Rensselaer Polytechnic Institute,1994.1037-1041.
  • 3CHEN H,KIRUBARAJAN T,BAR-SHALOM Y. Performance limits of track-to-track fusion versus.centralized estimation:theory and application[J].IEEE Transactions on Aerospace and Electronic Systems,2003,(02):386-398.
  • 4邓自立;祁荣宾.多传感器信息融合次优稳态Kalman滤波器[J]中国学术期刊文摘,2000(02):183-184.
  • 5SUN S L. Multi-sensor optimal information fusion Kalman filter with application[J].AEROSPACE SCIENCE AND TECHNOLOGY,2004,(01):57-62.
  • 6邓自立;王欣;高媛.建模与估计[M]北京:科学出版社,2007127-256.

同被引文献5

  • 1BAR -SHALOM Y . On the track-to-trackcorrelation problem[J]. IEEE Trans on automaticControl, 1981,26(2):571-572.
  • 2KIM K H. Development of track to trackfusion algorithm[C]//Proc of american Conference.Troy : Rensselaer Polytechnic Institute, 1994 : 1037-1041.
  • 3CHEN H,KIRUBARAJAN T,BAR-SHALOMY. Performance limits of track-to-track fusion versus.centralized estimation : theory and application[J]. IEEE transon Aerospace and Electronic Systems,2003,39(2):386-398.
  • 4邓自立,祁荣宾.多传感器信息融合次优稳态Kalman滤波器[J].中国学术期刊文摘(科技快报),2000,6(2):183-184.
  • 5SUN S L. Multi-sensor optimal information fusionKalman filter with application[J]. Aerospace Science andTechnology,2004,8(1): 57-62.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部