摘要
构建基于多层前馈神经网络的仿真模型,以台湾16年面板数据进行训练,并将训练得出的模式有条件移植至福建,给出提升福建科技服务水平的建议。训练模型表明,当政府提高集聚要求时,研发经费及基础研究经费的增加最为重要;移植模型认为,福建省应增加研发经费投入、提高基础研究经费比率、促进企业增加研发经费、培养激励研究人员,以此促进产业集聚。
A simulation model is build based on multi-layer feed forward neural networks with a 16-year panel data trained, and suggestions on Fujian technology services are given according to the conditional transplanting to Fujian. Training model shows that, improving the R&D funding and the funding for basic research are important when the industrial gathering are required ; transplantation model to Fujian Province indicates that,there are four ways for government to promote the gath- ering of the industry:improving the R&D funding,increasing the ratio of basic research funding, encouraging enterprises to increase R&D funding and motivating the researchers.
出处
《科技进步与对策》
CSSCI
北大核心
2014年第3期42-49,共8页
Science & Technology Progress and Policy
基金
福建省软科学基金项目(2011R0091)
关键词
科技服务
产业集聚
神经网络
移植模型
训练模型
Science and Technology Services
Industrial Agglomeration
Neural Network
Transplantation Model
Training Model