期刊文献+

基于旋量理论的上肢康复机器人Kane动力学方程 被引量:5

Kane Dynamic Equations Based on Screw Theory for Upper Limb Rehabilitation Robot
下载PDF
导出
摘要 引入基于旋量理论的运动旋量、力旋量及偏速度旋量等概念,推导得出五自由度上肢康复机器人的Kane动力学方程.结果表明,采用旋量理论分析机器人更加简明有效,比建立局部坐标系的D-H法更简易.Kane方程的求解只需加、减、乘运算,与拉格朗日、牛顿-欧拉等非线性动力学方程相比,计算效率更高,更易于实现实时控制.通过仿真研究了机器人各关节从初始位形到准备位形的角位移、角速度、角加速度以及驱动力矩,验证了基于旋量理论的Kane方程的正确性和有效性. Based on the screw theory, the concepts of motion screw, force screw and partial velocity screw were introduced. Then Kane dynamic equations were derived for an upper limb rehabilitation robot with 5 DOF. Simulation results show that dynamics analysis for the robot based on the screw theory is more concise and explicit than that based on the D-H method in which local coordinate systems are used. The solution of Kane equations only involves addition, subtraction and multiplication, so the method has higher calculation efficiency than nonlinear Lagrange and Newton-Euler dynamic equations and is easier to implement real time control. The robotic joint curves of angular displacements, angular velocities, angular accelerations were studied by simulation from initial configuration to ready configuration. The conclusion validates the correctness and effectiveness of Kane equations based on the screw theory.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期153-157,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61074098)
关键词 上肢康复机器人 旋量理论 偏速度旋量 动力学 KANE方程 upper limb rehabilitation robot screw theory partial velocity screw dynamics Kane equations
  • 相关文献

参考文献6

二级参考文献34

  • 1王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算[J].机械工程学报,2005,41(8):18-23. 被引量:20
  • 2陈志国,须文波.基于运动控制卡的机器人智能切割系统[J].微计算机信息,2005,21(08X):95-97. 被引量:20
  • 3LONG J H, Biomimetic robotics: Self-propelled physical models test hypotheses about the mechanics and evolution of swimming vertebrates[J]. J. Mech. Eng. Sci., 2007,221(10): 1 193-1200.
  • 4ALVARADO P V, YOUCEF T K. Design of machines with compliant bodies for biomimetic locomotion in liquid environments[J]. Journal of DYrlamic Systems, Measurement and Control, 2006, 128: 3-13.
  • 5KORAY K S, GEORGE G A. Dynamic modeling and hydrodynamic performance of biomimetic underwater robot locomotion[J]. Autonomous Robotics, 2002, 13:223-240.
  • 6EUNJUNG K. YOUNGIL Y. Design and dynamic analysis of fish robot: PoTuna[C]// 2004 IEEE International Conference on Robotics and Automation, April 26-May 1, 2004, New Orleans, LA, United States. Piscataway, NJ: IEEE, 2004:4 887-4 892.
  • 7GRAY J. Studies in animal locomotion VI: The propulsive powers of the dolphin[J]. J. Exp. BioL, 1936, 13: 192-199.
  • 8TAYLOR G. Analysis of the swimming of long narrow animals[J]. Proc. R. Soc. Lond. A, 1952, 214: 158-183.
  • 9LIGHTHILL M J. Note on the swimming of slender fish[J]. Journal of Fluid Mechanics, 1960, 9: 305-317.
  • 10WU T Y. Swimming of a waving plate[J]. Journal of Fluid Mechanics, 1961, 10: 321-344.

共引文献51

同被引文献49

引证文献5

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部