期刊文献+

引入松弛因子的高阶收敛FastICA算法 被引量:7

Relaxation Factor-based FastICA with Higher Order Convergence
下载PDF
导出
摘要 高阶收敛的FastICA算法对初始值的选择较为敏感,如果初始值选择不当不仅会影响算法的收敛效果,甚至可能导致不收敛的结果.针对这一问题,将松弛因子引入高阶收敛的牛顿迭代法中,通过适当的修正,获得了既能保证一定收敛速度,又能有效克服初值敏感性的改进三阶、五阶FastICA算法.仿真工具采用Matlab软件,应用3种算法对语音信号进行分离;结果表明,对比基本FastICA算法,改进后的算法有效地分离了混合信号,并且降低了算法对初始权值的依赖性. High order FastlCA (fast independent component analysis )algorithm has the characteristics of simple form and quick convergence. However, the algorithm is sensitive to its initial value which affects the convergence effect and even results in non-convergence if it is not chosen appropriately. In order to solve this problem, a relaxation factor is introduced into high order Newton iterative method. Through the appropriate correction, the improved high order FastICA algorithm can be obtained, which can not only guarantee the convergence speed, but also effectively overcome the initial value sensitivity problem. Applying the algorithm to the separation experiment of speech signals, the result shows that the proposed algorithm effectively separates the mixed signal, and reduces the dependence on the initial value.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期204-207,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(11273001 61074073 61273164) 教育部新世纪优秀人才支持计划项目(NCET-10-0306)
关键词 独立分量分析 FASTICA 松弛因子 初值敏感性 independent component analysis (ICA) FastlCA relaxation factor initial valuesensitivity
  • 相关文献

参考文献10

  • 1Castano S, Ferrara A, Montanelli S, et al. A general framework for ontology-based knowledge sharing and a evolution in P2P systems[ C ]// The 14th InternationalWorkshop on Database and Expert Systems Applications. Prague:/EEE Press,2003:597 - 603.
  • 2Hyvarinen A, Karhunen J, Oja E. Independent component analysis [ M ]. Hoboken : John Wiley & Sons,2001.
  • 3Asno F, Ikeda S, Ogawa M, et al. Combined approach of array processing and independent component analysis for blind separation of acoustic signals [ J]. IEEE Transactions on Speech and Audio Processing ,2003,11 ( 3 ) :204 - 215.
  • 4崔会丽,魏航,张军.基于FastICA算法的高光谱图像混合像元分解[J].佳木斯大学学报(自然科学版),2012,30(5):751-753. 被引量:1
  • 5Cvejic N, Bull D, Canagarajah N. Region-based multimodal image fusion using ICA bases [ J ]. IEEE Sensors Journal, 2007,7(5 ) :743 -751.
  • 6von Hoff T P,Lindgren A G, Kaelin A N. Step-size control in blind source separation [ C ]// International Workshop on Independent Component Analysis and Blind Signal Separation. Helsinki ,2000:509 - 513.
  • 7Ji C, Yu Y, Yu P. A new FastlCA algorithm of Newton' iteration [ C ]//The 2010 International Conference on Education Technology and Computer. Shanghai, 2010 : 481 - 484.
  • 8季策,于洋,于鹏.改进的独立分量分析算法[J].东北大学学报(自然科学版),2010,31(8):1086-1088. 被引量:11
  • 9季策,胡祥楠,朱丽春,张志伟.改进的高阶收敛FastICA算法[J].东北大学学报(自然科学版),2011,32(10):1390-1393. 被引量:13
  • 10Paraschiv-Ionescu A, Jutten C, et al. Wavelet denoising for highly noisy source separation E C ]//IEEE International Symposium on Circuits and Systems. Phoenix-Scottsdale, 2002 1201 - 1203.

二级参考文献11

共引文献20

同被引文献67

  • 1杜鹏,赵慧洁.基于抗噪声ICA的高光谱数据特征提取方法[J].北京航空航天大学学报,2005,31(10):1101-1105. 被引量:7
  • 2王小敏,曾生根,夏德深.基于松弛因子改进FastICA算法的遥感图像分类方法[J].计算机研究与发展,2006,43(4):708-715. 被引量:7
  • 3黄丽妍,高强,亢海燕,赵振兵,许怡娴.改进的快速独立分量分析算法[J].华北电力大学学报(自然科学版),2006,33(3):59-62. 被引量:12
  • 4Jimin Ye,Haihong Jin,Qingrui Zhang.Adaptive weighted orthogonal constrained algorithm for blind source separation[J].Digital Signal Processing.2013(2)
  • 5Changli Li,Guisheng Liao,Yuli Shen.An improved method for independent component analysis with reference[J].Digital Signal Processing.2009(2)
  • 6E1Rhabi M, Fenniri H, Keziou A, et al. A robust algo- rithm for convolutive blind source separation in presence of noise[J]. Signal Processing, 2013, 93.. 818-827.
  • 7Abolghasemi V, Ferdowsi S, Sanei N Blind separation of image sources via adaptive dictionary learning [J]. IEEE Transactions on Image Processing, 2012, 21 (6) : 2921-2930.
  • 8Novey M, Adal T. Complex ICA by negentropy maximi- zation[J] . IEEE Transactions on Neural Networks, 2008, 19(4):596-609.
  • 9Mehrabian H, Pang I, Chopra R, et al. An adaptive complex independent component analysis to analyze dy- namic contrast enhanced-MRI [C]//IEEE International Symposium on Biomedical Imaging(ISBI), 2012,9: 1052- 1055.
  • 10Chao JC, Dougla SC. A robust complex FastICA algo- rithm using the huber M-estimator cost function[C]//7th International Conference on Independent Component A- nalysis and Signal Separation, IEEE Press, 2007.. 152-160.

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部