期刊文献+

带有分段常数变量的单种群模型的稳定性和分支行为(英文) 被引量:3

Stability and Bifurcation Analysis of a Population Model with Piecewise Constant Arguments
下载PDF
导出
摘要 本文研究了带有分段常数变量的单种群连续模型的稳定性和分支行为.首先,通过计算将连续模型转化为对应的差分模型,使用线性稳定性理论在三种情况下研究了差分模型在正平衡态处局部渐近稳定的充分条件.其次,将参数r作为分支参数,利用分支理论研究了差分模型在正平衡态处产生翻转分支的条件.最后,数值模拟验证了理论分析的正确性. The stability and bifurcation behavior of a population model with piecewise con-stant arguments are investigated in this paper. The discrete model determining the dynamical behavior of corresponding differential model is achieved by calculation. Firstly, the sufficient conditions for the local asymptotic stability of the steady state are achieved in three aspects based on the linearized stability analysis. Secondly, by choosing the parameter r as the bifurcation parameter and using the bifurcation theory, we find that the discrete equation undergoes a flip bifurcation at an excep-tive value of the parameter r. Finally, numerical examples are carried out to justify the main results in this work.
作者 王烈 陈斯养
出处 《工程数学学报》 CSCD 北大核心 2014年第1期125-138,共14页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(60671063 11171199) the Fundamental Research Funds of the Central Universities(GK201302006)
关键词 差分方程 分段常数变量 稳定性 翻转分支 difference equation piecewise constant argument stability flip bifurcation
  • 相关文献

参考文献16

  • 1May R M. Biological populations obeying difference equations: stable points, stable cycles and chaos[J]. The Journal of Theoretical Biology, 1975, 51(2): 511-524.
  • 2May R M, Oster G F. Bifurcations and dynamics complexity in simple ecological models[J]. The American Naturalist, 1976, 110(974): 573-599.
  • 3Cull P. Global stability of population models[J]. Bulletin of Mathematical Biology, 1981, 43(1): 47-58.
  • 4Seifert G. On a delay-differential equation for single specie population variations[J]. Nonlinear Analysis: Theory, Methods & Applications, 1987, 11(2): 1051-1059.
  • 5Seifert C. Oscillatory solutions for certain delay-differentiM equation[J]. Proceedings of the American Math- ematical Society, 1988, 104(2): 553-557.
  • 6Kocic V L, Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Appli- cations[M]. Oxford: Oxford University Press, 1991.
  • 7Cooke K L, Huang W. Delay and Differential Equations[M]. Iova: World Scientific, 1991.
  • 8Gopalsamy K. Stability and Oscillation in Delay Differential Equations of Population Dynamics[M]. Dor- drecht: Kluwer Academic Publishers, 1992.
  • 9So J W H, Yu J S. Global stability in a logistic equation with piecewise constant arguments[J]. Hokkaido Mathematical Journal, 1995, 24(2): 269-286.
  • 10Gopalsamy K, Liu P. Persistence and global stability in a population model]J]. Journal of Mathematical Analysis and Applications, 1998, 224(1): 59-80.

同被引文献8

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部