期刊文献+

关于广义调和数的一些结果(英文) 被引量:1

Some Results on the Generalized Harmonic Numbers
下载PDF
导出
摘要 本文我们讨论了一类广义调和数Hn,k,r(α,β)的性质.特别是,通过取系数法和Riordan阵方法建立了一些包含Hn,k,r(α,β)的组合恒等式.此外,我们通过奇异性分析法和Laplace方法得到了某些包含Hn,k,r(α,β)和式的渐近值. In this paper, we discuss the properties of a class of generalized harmonic numbers Hn,k,r (α,β). In particular, by means of the method of coefficients and Riordan arrays, we establish some identities involving Hn,k,r (α,β). Furthermore, we get the asymptotic values of some summations associated with Hn,k,r (α,β) by the singularity analysis method and the Laplace’s method.
出处 《工程数学学报》 CSCD 北大核心 2014年第1期152-158,共7页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11061020) the Natural Science Foundation of Inner Mongolia(2012MS0118)
关键词 广义调和数 Riordan阵 系数法 渐近值 generalized harmonic numbers Riordan arrays method of coefficients asymptotic values
  • 相关文献

参考文献7

  • 1Cheon G S, E1-Mikkawy M A. Generalized harmonic numbers with Riordan arrays[J]. Journal of Number Theory, 2008, 128(2): 413-425.
  • 2Wang W P. Riordan arrays and harmonic number identities[J]. Computers and Mathematics with Appli- cations, 2010, 60(5): 1494-1509.
  • 3Zhao F Z, Wuyungaowa. Some results on a class of generalized harmonic numbers[J]. Utilitas Mathematica, 2012, 87(1): 65-78.
  • 4Merlini D, Sprugnoli R, Verri M C. The method of coefficients[J]. American Mathematical Monthly, 2007, 114:40-57.
  • 5Bender E A. Asymptotic methods in enumerationIJ]. SIAM Review, 1974, 16(4): 485-515.
  • 6Flajolet P, et al. A hybrid of Darboux's method and singularity analysis in combinatorial asymptotics[J]. The Electronic Journal of Combinatorics, 2006, 13:R103.
  • 7Tiberiu T. Combinatorial sums and series involving inverse of binomial coefficients[J]. The Fibonazci Quar- terly, 2000, 38(1): 79-84.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部