期刊文献+

LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2粉体的类共沉淀制备及性能 被引量:1

Quasi-coprecipitation method preparation and electrochemical properties of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 powders
下载PDF
导出
摘要 在含有Li+、Co2+、Ni2+、Mn2+离子的混合溶液中加入(NH4)2CO3作沉淀剂,通过一步共沉淀反应得到含有四种金属离子的混合沉淀前驱体。前驱体经烘干,研磨后在不同温度(700~1000℃)及不同时间(6~24 h)条件下进行烧结,即得到LiNi1/3Co1/3Mn1/3O2粉体。分别通过X射线衍射(XRD)、扫描电镜(SEM)及循环伏安(CV)、交流阻抗对制备粉体的微结构进行表征和对样品的电化学性能进行测试。结果表明:获得的LiNi1/3Co1/3Mn1/3O2粉体为α-NaFeO2层状结构,颗粒分布均匀,放电比电容高,阻抗小。其中在900℃下烧结12 h所得的LiNi1/3Co1/3Mn1/3O2粉体电化学性能最优。当电压窗口在(0~1.4)Vvs.SCE、扫描速度为5 mV·s-1、电解液为1 mol·L-1 Li2SO4溶液时,其比容量可达399.46 F·g-1;并且其阻抗也最小。 (NH4)2CO3 was added into mixed solution contained Li +, Co2+, Ni2+ and Mn2+ ions as a precipitant. The mixing precipitation precursors were prepared by one-step co-precipitation reaction. After being dried and ground, the precursors were sintered under different sintering temperatures(700-1 000℃) and different sintering times (6 -24 h), and then LiNi1/3Co1/3Mn1/3O2 powders were obtained. The microstructures and electrochemical properties of the as-prepared powders were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance. The results show that the obtained LiNi1/3Co1/3Mn1/3O2 powders are pure α-NaFeO2 layered structure;the powders are uniform and exhibit excellent discharge specific capacitance and lower impedance. After sintered at 900℃ for 12 h, the obtained LiNi1/3Co1/3Mn1/3O2 powder exhibits the optimum electrochemical performance. The specific capacitance of the LiNi1/3Co1/3Mn1/3O2 powders can reach 399.46 F·g-1 within potential range of (0-1.4) V at a scanning rate of 5 mV·s-1 in 1 mol·L-1 Li2SO4 solution.And the powders also have the lowest impedance.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第2期610-614,共5页 Infrared and Laser Engineering
基金 电子薄膜与器件国家重点实验室开放课题(KFJJ201109) 四川省教育厅重点项目(12ZA142 11ZZ013)
关键词 LINI1 3Co1 3Mn1 3O2 粉体 类共沉淀法 循环伏安 交流阻抗 LINI1 3Co1 3Mn1 3O2 powder quasi-coprecipitation method cyclic voltammetry electrochemical impedance
  • 相关文献

参考文献16

  • 1Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 20m, 414: 359-367.
  • 2Liu G Q, Wen L, Liu Y M. Spinel LiNiosMnJsO. and its derivatives as cathodes for high-voltage Li-ion batteries[J]. J Solid State Electrochem, 2010, 14: 2191-2202.
  • 3W Fergus J. Recent developments in cathode materials for lithium ion batteries[J]. J Power Sources, 2010, 195: 939-954.
  • 4Kwon S N, Yoon S D, Park H R, et al. Variation of discharged capacities with C-rate for LiNi1_,M,02(M=Ni, Ga, AI, and/or Ti) cathodes synthesized by the combustion method[J]. Ceram Int, 2010, 36(3): 893-898.
  • 5Sun Y Z, Pan J Q, Wan P Y, et al. The proton exchange chemistry of layered Ni(OH), for two types of high-capacity cathode materials in rechargeable batteries[J]. Res Bull, 2009, 44(1): 227-230.
  • 6Song M Y, Kwon S N, Park H R. Variation of properties of LiNio <r!.,Mo (l,,02 (M =Ga, In and Tl) prepared by the combustion method[J]. Ceram Int, 2009, 35(8): 3135-314l.
  • 7Li Y K, Zhang R X, Liu J S, et al. Effect of heptamethyldisilazane as an addictive on the stability performance of LiMn,04 cathode for lithium-ion battery[J]. J Power Sources, 2009, 189(1): 685-688.
  • 8Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1l3Mnl/,302 for lithium-ion batteries[J]. Chem Lett, 2001, 30(7): 642-643.
  • 9Singh G, Sil A, Ghosh S, et al. Effect of citric acid content on synthesis of LiCol/,Nil/.,Mnl/30, and its electrochemical characteristics[J]. Ceram Int, 2010, 36(6): 1831-1836.
  • 10Sathiya M, Prakash A S, Ramesha K, et al. Rapid synthetic routes to prepare LiCol/,Nil/,Mnl/302 as a high voltage, high capacity Li-ion battery cathode material[J]. Mater Res Bull, 2009, 44(11): 1990-1994.

同被引文献15

  • 1Ohzuku T, Makimura Y. Layered lithium insertion material of I.iCol,3Ni~/3 Mnl/3 02 for lithium-ion batteries[J]. Chem Lett, 2001,1(7) :642-643.
  • 2Decheng Li, Yuki Sasaki, Koichi Kobayakawa, et al. Prepara- tion,morphology and electrochemical characteristics of LiNil/:~ Mnl/a Col/3 02 with LiF addition[J].Electrochimica Aeta, 2006, 52(2) : 643-648.
  • 3Ding Yanhuai, Zhang Ping, Gao Deshu. Synthesis and electro- chemical properties of layered Li [ Ni~/a Col/3 Mnl/3 ]o. 9G Ti~.o.~ O1.96 Fo. 04 as cathode material for lithium-ion batteries[J]. Jour- nal of Alloys and Compounds, 2008,456 (1/2) : 344-347.
  • 4Shi S J,Tu J P,Tang Y Y,et al. Enhanced electrochemicai per- formance of LiF-modified LiCol/3 Nil/3 Mnl/302 cathode materi- als for Li-ion batteries[J]. Journal of Power Sources, 2013,225 (1) :338-346.
  • 5Sung Nam Lim,Jung Yoon Seo,Dae Soo Jung,et al. The crystal strucrure and electrochemical performance of Li1.167 Mn0. s48 Ni0.18 C00.105 02 composite cathodes doped and co-doped with Mg and F[J]. Journal of Electroanatytical Chemistry, 2015,740 (1) :88-94.
  • 6Wu Jiefan, Liu Hongguang, Ye Xuehai, et al. Effect of Nb do- ping on electrochemical properties of LiNil/3 Col/3 Mnl/30z at high cutoff voltage for lithium-ion battery[J]. Journal of Alloys and Compounds, 2015,644(25) : 223-227.
  • 7Zhong Shengkui, You Wang, Jiequn Liu, et al. Synthesis and electrochemical properties of Ce-doped LiNil/~ Mnl/3 Col/3 Oz cathode material for Li-ion batteries[J]. Journal of Rare Ear- hts,2011,9(29) :891-895.
  • 8Ding Yanhuai, Zhang Ping, Jiang Yong, et al. Effect of rare earth elements doping on structure and electrochemical proper- ties of LiNia/3 Col/3 Mnl/3 Oz for lithium-ion batteryEJ]. Solid State Ionics, 2007,13-14 (178) : 967-971.
  • 9Li Xiang, Xie Zhengwei, Liu Wenjing, et al. Effects of fluorine doping on structure, surface chemistry, and electrochemical per-fprmance of LiNio. 8 Coo. 15 Mno. os 02 [ J]. Electrochimica Acta, 2015,174(20) : 1122-1130.
  • 10Chen Yuhong,Jiao Qishuai, Wang Liang, et al. Synthesis and characterization of Li~. ~ Col/~ Nil/~ Mnt/3 Or. 95 X0.05 (X = CI, Br) cathode materials for lithium-ion battery[J]. Competes Rendus Chimie,2013,16(9) : 845-849.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部