期刊文献+

线性互补问题罚函数法的收敛性 被引量:2

Converge of Power Penalty Method for Linear Complementarity Promblems
下载PDF
导出
摘要 探讨了线性互补问题解和一类罚函数方程解之间的等价关系,证明了在矩阵A是一个有界的H-矩阵且对角行占优的情况下罚函数方程的解指数次收敛到线性互补问题的解,数值例子验证了其结果. In this paper, we discusses equivatence relationship between the solutions of linear complementarity prob-lem solutions and a penalty function equation, we prove the solution to the penalty equation converges to that of the lin-ear complementarity’s with〔A〕is a bounded〔H-〕matrix and the diagonal line of dominant, the number examples ver-ify the results.
出处 《内蒙古民族大学学报(自然科学版)》 2013年第6期631-634,共4页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 内蒙古自然科学基金资助项目(2011MS0114)
关键词 线性互补问题 罚函数法 H-矩阵 对角行占优 有界的 LCPproblems Power penalty method H-matrix Dominant diagonal line Bounded
  • 相关文献

参考文献6

  • 1Wang S,Yang X Q.Power penalty method for linear complementarity problems [J].Operations Research Letters,2008,36 (2):211-214.
  • 2Facehinei F,Pang J S.Finite-dimensional variational inequalities and complementarity[M].Vol. Ⅰ & Ⅱ .New York:Spinger, 2003.
  • 3Glowinski R.Numercial methods for nonlinear variational problems [ M ].New York: Springer-Verlag, 1984.
  • 4陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.
  • 5Varga R S.Matrix herative Analysis [ M ].Prentice-Hall,Englewood Cliffs,NY, 1962.
  • 6袁亚湘 孙文渝.最优化理论与方法[M].北京:科学出版社,1999..

共引文献139

同被引文献13

  • 1秦克云,涂文彪.粗糙集代数与格蕴涵代数[J].西南交通大学学报,2004,39(6):754-757. 被引量:16
  • 2李庆阳 莫孜中 祁力群.非线性方程组的数值解法[M].北京:科学出版社,1999..
  • 3Jiri Rohn.A Theorem of the Alternatives for the Equation Ax+B||x=b[J].Linear and Multilinear Algebra,2004,52(6):421-426.
  • 4Mangasarian O L.Absolute value equations[J].Linear Algebra Appl,2006,(419):259-267.
  • 5Cottle R W,Pang J S,Stone R E.The Linear Complementarity Problems[M].San Diego:Academic Press,CA,1992.
  • 6Geiger C,Kanzow C.On the resolution of monotone complementarity problems[J].Comput Optim.Appl,1996,5:155-173.
  • 7Pawlak Z. Rough sets[J]. International Journal of Com- puter and Information Science, 1982,11:341-356.
  • 8Xu Yang, Jun Y B, Qin Keyun, Liu Jun. Lattice Logic [M]. Berlin: Springer, 2004.
  • 9Huang Yisheng. BCI-algebras [M]. Belling: Science Press,2006.
  • 10乔全喜,秦克云.粗糙集代数与BL代数[J].计算机工程与应用,2008,44(33):46-47. 被引量:11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部