期刊文献+

次正规嵌入子群与有限群的可解性(Ⅰ) 被引量:1

Subnormally Embedded Subgroups and Solvability of Finite Groups
下载PDF
导出
摘要 证明了,设P是群G的Sylow 2-子群,若P的极大子群都在G中次正规嵌入,则G可解;若群G的Sylow 2-子群的循环子群均在G中次正规嵌入,则G可解;设M为群G的幂零极大子群或M为群G的内2-幂零极大子群,若M的Sylow 2-子群的极大子群都在G中次正规嵌入,则G可解. Let P be a Sylow 2-subgroup of a group G I.f the maximal subgroup of P is subnormal-ly embedded in G ,then G is solvable I.f a cyclic subgroup of Sylow 2-subgroup of a group G is subnor-mally embedded in G .then G is solvable .Let M be a nilpotnent maximal subgroup of a group G or M be an inner 2-nilpotent maximal subgroup of a group G ,if the maximal subgroup of Sylow 2-subgroup of M is subnormally embedded in G ,then G is solvable .
出处 《广西师范学院学报(自然科学版)》 2013年第4期18-21,共4页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 国家自然科学基金(10961007 11161006) 广西自然科学基金(0991102 0991101) 广西教育厅科研基金
关键词 可解群 次正规嵌入子群 SYLOW 2-子群 极大子群 循环子群 solvoble group subnormally embedded subgroup Sylow 2-subgroup maximal sub-group cyclic subgroup
  • 相关文献

参考文献11

  • 1WIELANDT H.Eine verallgemeinerung der invarianten untergruppen[J].Math Z,1939, 45: 209-244.
  • 2BARTELS D.Subnormality and invariant relations on conjugacy classes in finite groups[J]. Math Z, 1977,157: 13- 17.
  • 3LENNOX J C, STONEHEWER S E. Subnormal Subgroups of Groups[M]. Oxford:Clarenden Press, 1987.
  • 4ROBINSON Derek J S. A Course in the Theory of Groups[M]. New York:Springer-Verlag, 1982.
  • 5WEI H, PAN H. A criterion for subnormality of subgroups in finite groups[J]. Aeta Math Sinica,English Series, to appaer.
  • 6BALLESTER-BOLINCHES A, PEDRAZA-AGUILERA M C. Sufficient conditions for supersolvability of finite groups[J]. J Pure Appl Algebra,1998,127: 113-118.
  • 7ASAAD M, HELIEL A A. On S-quasinormally embedded subgroups of finite groups[J]. J Pure Appl Algebra, 2001,165: 129-135.
  • 8LI Y,WANG Y, WEI H. On p-nilpotency of finite groups with some π-quasinormally embedded [J]. Acta Math Hungar, 2005,108 : 283-298.
  • 9黄琼,韦华全,杨立英,张晓荟.次正规嵌入子群与有限群的p-幂零性[J].广西科学,2011,18(4):325-328. 被引量:7
  • 10TATE J. Nilpotent quotient groups[J]. Topology, 1964,3: 109-111.

二级参考文献10

  • 1Wielandt H. Eine verallgemeinerung der invarianten untergruppen[J]. Math Z, 1939,45 : 209-244.
  • 2Bartels D. Subnormality and invariant relations on conjugacy classes in finite groups[J]. Math Z, 1977,157:13- 17.
  • 3Lennox J C, Stonehewer S E. Subnormal subgroups of groups [M]. Oxford Mathematical Publications, Ox- ford: Clarenden Press,1987.
  • 4Robinson D J S. A course in the theory of groups[M]. Berlin Heidelberg, New York: Springer-Verlag, 1982.
  • 5Ballester-Bolinches A, Pedraza-Aguilera M C. Sufficient conditions for supersolvability of finite groups [J]. J Pure Appl Algebra, 1998,127 : 113-118.
  • 6Asaad M, Heliel A A. On S-quasinormally embedded subgroups of finite groups[J]. J Pure Appl Algebra, 2001,165:129-135.
  • 7Li Y,Wang Y,Wei H. On p -nilpotency of finite groups with some π-quasinormally embedded[J]. Acta Math Hungar, 2005,108 : 283-298.
  • 8Kegel O H. Sylow-gruppen undsubnormalteiler endli- eher gruppen[J]. Math Z, 1962,78 : 205-221.
  • 9Wei H, Wang Y. On c^+ -normality and its properties [J]. J Group Theory,2007,10(2) : 211-223.
  • 10左林.次正规子群对有限群p-幂零性的影响[J].湖州师范学院学报,2010,32(2):9-12. 被引量:2

共引文献6

同被引文献9

  • 1杜妮,李世荣.关于有限群极大子群的强θ-完备[J].数学年刊(A辑),2006,27(2):279-286. 被引量:7
  • 2ZHAOYQ.Ontheindexcomplexofamaximalsubgroupandsupersovableofafinitegroup[J].Comm Algebra,1996,24:1785-1791.
  • 3LISR,ZHAOYQ.OnsGCompletionsofMaximalSubgroupsofFiniteGroups[J].AlgebraColloquium,2004,11(3):411-420.
  • 4宋玉.极大子群特性与有限可解群[D].南宁:广西师范学院,2007.
  • 5DESKINSW E.Onmaximalsubgroups[J].ProcSymposPureMath,1959,1:100-104.
  • 6ZHAO Y Q.OntheDeskinscompletions,thetacompletionsandthetapairsformaximalsubgroups(I)[J].CommAlgebra,1998,26:3141-3153.
  • 7DOERKK,HAWKEST.FiniteSolvableGroups[M].BerlinGNewYork:WalterdeGruyter,1992:53-60.
  • 8杨立英,宋玉.极大子群的次正规完备与有限群的可解性[J].四川师范大学学报(自然科学版),2011,34(5):655-658. 被引量:2
  • 9黄琼,韦华全,杨立英,张晓荟.次正规嵌入子群与有限群的p-幂零性[J].广西科学,2011,18(4):325-328. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部