摘要
证明了,设P是群G的Sylow 2-子群,若P的极大子群都在G中次正规嵌入,则G可解;若群G的Sylow 2-子群的循环子群均在G中次正规嵌入,则G可解;设M为群G的幂零极大子群或M为群G的内2-幂零极大子群,若M的Sylow 2-子群的极大子群都在G中次正规嵌入,则G可解.
Let P be a Sylow 2-subgroup of a group G I.f the maximal subgroup of P is subnormal-ly embedded in G ,then G is solvable I.f a cyclic subgroup of Sylow 2-subgroup of a group G is subnor-mally embedded in G .then G is solvable .Let M be a nilpotnent maximal subgroup of a group G or M be an inner 2-nilpotent maximal subgroup of a group G ,if the maximal subgroup of Sylow 2-subgroup of M is subnormally embedded in G ,then G is solvable .
出处
《广西师范学院学报(自然科学版)》
2013年第4期18-21,共4页
Journal of Guangxi Teachers Education University(Natural Science Edition)
基金
国家自然科学基金(10961007
11161006)
广西自然科学基金(0991102
0991101)
广西教育厅科研基金