期刊文献+

前馈神经网络结构新型剪枝算法研究

A New Pruning Algorithm for Feedforward Neural Network
下载PDF
导出
摘要 研究神经网络的结构优化,提出采用基于贡献值与输出连接的权重来修剪节点,节点是直接剪枝而不是消除存有内在联系的节点;该方法认为神经元贡献值低于阈值,那么此神经元就是毫无意义的,同时将该算法应用于非线性函数逼近,实验结果表明,在不牺牲网络性能的情况下,采用新型剪枝算法来修剪神经网络节点是非常有意义的,所提出的算法也是非常有效的。 In this paper ,based on the value and contribution of weights connected to the output node pruning ,pruning nodes are not directly linked to eliminate the inherent node ;neurons contribute to the method that is below the threshold value ,then the neuron is meaningless .Meanwhile ,the algo-rithm is applied to nonlinear function approximation ,the results show that the network performance without sacrificing the case ,using new pruning algorithm neural network node pruning is very mean-ingful that the proposed algorithm is also very effective .
出处 《广西师范学院学报(自然科学版)》 2013年第4期55-60,共6页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 国家自然科学基金(60864001)
关键词 多层前馈神经网络 输入和隐含层神经元修剪 权重 非线性函数逼近 multilayer feedforward neural networks input and hidden layer neuron pruning weight contribution nonlinear function approximation
  • 相关文献

参考文献14

二级参考文献59

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 4杨慧中,王伟娜,丁锋.神经网络的两种结构优化算法研究[J].信息与控制,2006,35(6):700-704. 被引量:11
  • 5Y Le Curl,J S Denker, S A Solla. Optimal brain damage[A]. Advances in Neural Information Processing Systems[ C ]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1990, 2: 598 - 605.
  • 6B Hassibi, D G Stork. Second-order derivatives for network pruning:optimal brain surgeon[ A] .Advances in Neural Informarion Processing Systems[ C]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc,1993,5:164- 171.
  • 7T Cibas, F F Soulie, P Gallinari, S Raudys. Variable selection with neural networks [ J ]. Neurocomputing, 1996, 12 ( 2 - 3 ) : 223- 248.
  • 8M E Ricotti, E Zio. Neural network approach to sensitivity and uncertainty analysis [ J ]. Reliability Engineering and System Safety, 1999,64(1) :59 - 71.
  • 9Saltelli S Tarantola, K-S Chan. A quantitative model independent method for global sensitivity analysis of model output[ J]. Technometrics, 1999,41 ( 1 ) : 39 - 56.
  • 10Philippe Lauret,Eric Fock, Thierry Alex Mara. A node pruning algorithm based on a Fourier amplitude sensitivity test method [ J ]. IEEE Transactions on Neural Networks, 2006, 17 (2) : 273 - 293.

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部