摘要
研究神经网络的结构优化,提出采用基于贡献值与输出连接的权重来修剪节点,节点是直接剪枝而不是消除存有内在联系的节点;该方法认为神经元贡献值低于阈值,那么此神经元就是毫无意义的,同时将该算法应用于非线性函数逼近,实验结果表明,在不牺牲网络性能的情况下,采用新型剪枝算法来修剪神经网络节点是非常有意义的,所提出的算法也是非常有效的。
In this paper ,based on the value and contribution of weights connected to the output node pruning ,pruning nodes are not directly linked to eliminate the inherent node ;neurons contribute to the method that is below the threshold value ,then the neuron is meaningless .Meanwhile ,the algo-rithm is applied to nonlinear function approximation ,the results show that the network performance without sacrificing the case ,using new pruning algorithm neural network node pruning is very mean-ingful that the proposed algorithm is also very effective .
出处
《广西师范学院学报(自然科学版)》
2013年第4期55-60,共6页
Journal of Guangxi Teachers Education University(Natural Science Edition)
基金
国家自然科学基金(60864001)
关键词
多层前馈神经网络
输入和隐含层神经元修剪
权重
非线性函数逼近
multilayer feedforward neural networks
input and hidden layer neuron pruning
weight
contribution
nonlinear function approximation