期刊文献+

On Approximation of Function Classes in Lorentz Spaces with Anisotropic Norm

On Approximation of Function Classes in Lorentz Spaces with Anisotropic Norm
下载PDF
导出
摘要 In this paper, Lorentz space of functions of several variables and Besov's class are considered. We establish an exact approximation order of Besov's class by partial sums of Fourier's series for multiple trigonometric system. In this paper, Lorentz space of functions of several variables and Besov's class are considered. We establish an exact approximation order of Besov's class by partial sums of Fourier's series for multiple trigonometric system.
作者 G.Akishev
出处 《Analysis in Theory and Applications》 2013年第4期358-372,共15页 分析理论与应用(英文刊)
关键词 Lorentz space Besov's class approximation. Lorentz space, Besov's class, approximation.
  • 相关文献

参考文献28

  • 1G. Akishev, Approximation of functions classes in spaces mixed norm, Math. Sbomik, 197(8) (2006),17-40, (http://www .mathnet .ru/msb).
  • 2G. Akishev, On orders of approximation of function classes in Lorentz spaces with anisotropic norm, Math. Notes, 81(1) (2007),3-14, (http://www . mathnet. ru/mz).
  • 3T. I. Amanov, Spaces of differentiable functions with dominant mixed derivative, Alma-Ata, 1976, in Russian.
  • 4K. I. Babenko, Approximation by trigonometric polynomials in a certain class of periodic functions of several variables, Dokl. Akad. Nauk SSSR, 132(5) (1960),982-985.
  • 5D. B Bazarkhanov, Wavelet approximation and Fourier widths of classes of periodic functions of several variables: I, Trudy Math. Inst. Steklov, 269 (2010), 8-30.
  • 6E. S. Belinski, Approximation of functions of several variables by trigonometric polynomials with given number of harmonics, and estimates of s-entropy, Anal. Math., 15 (1989),67-74.
  • 7A. P. Blozinski, Multivariate rearrangements and Banach function spaces with mixed norms, Trans. Amer. Math. Soc., 263 (1981), 146-167.
  • 8Ya. S. Bugrov, Approximation of classes of functions with dominant mixed derivative, Math. Bb.,64 (1964),410-418, (http://www.mathnet.ru/msb). (in Russian).
  • 9A. R. DeVore, P. Petrushev and V. N. Temlyakov, Multivariate trigonometric approximation with frequencies from the hyperbolic cross, Mat. Zametki, 56(3) (1994),36-63, English Translation in Math. Notes, 56, (http://www.mathnet.ru/mz).
  • 10R. A. DeVore, S. V. Konyagin and V. N. Temlyakov, Hiperbolic wavelet approximation, Construc. Approx., 14 (1998), 1-26.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部