期刊文献+

一个对角Ramsey数的新下界

A New Lower Bound of a Diagonal Ramsey Number
下载PDF
导出
摘要 该文研究了对角Ramsey数的下界问题。利用Paley图的二级自同构,提高运算效率,计算出16993阶的Paley图的团数,获得一个对角Ramsey数的新下界:R(22,22)≥33989。 This paper makes an analysis of the lower bound of a diagonal Ramsey number by applying the 2nd automorphism of Paley pattern, computing efficiency being improved. The cluster number of Paley pattern of the exponent of 16993 is worked out and a new lower bound of a diagonal Ramsey is obtained:R (22, 22) ≥33989.
机构地区 梧州学院
出处 《梧州学院学报》 2013年第6期40-42,共3页 Journal of Wuzhou University
基金 广西自然科学基金资助项目(0991278)
关键词 RAMSEY数 下界 Paley图 团数 自同构 Ramsey number the lower bound Paley pattern cluster number automorphism
  • 相关文献

参考文献15

  • 1R.L.Graham, B.L.Rothschild, and J.H.Spencer. Ramsey theory[M]. John Wiley & Sons ,1990.
  • 2李乔.拉姆塞理论[M].大连:大连理工大学出版社,2011.
  • 3P.Erdos.Some remarks on the theory of graphs[J]. Bulletin of the American Mathematical Society, 1947,53:292 - 294.
  • 4P.Erdos.Graph theory and probability[J]. Canadian Journal of Mathematics, 1959,11:34 ~ 38.
  • 5R.E.Greenwood and A.M.Gteason.Combinatorial relations and chromatic graphs[J]. Canadian Journal of Mathematics, 1955,7:1 ~ 7.
  • 6S.P.Radziszowski. Small Ramsey Numbers[J]. The Electronic Journal of Combinatorics, View the Journal, Dynamic Surveys ,2011, Au- gust 22 E1JC revision # 13, (2011),DS 1.13:1 ~ 84 ( http://www.combinatorics .org ) or ( http://www, cs.rit.edu/-spr/E1JC/ejcram 13 .pdf ).
  • 7J.G. Kalbfleisch.Construetion of Special Edge-Chromatic Graphs[J]. Canadian Mathematical Bulletin, 8(1965) 575 ~ 584.
  • 8J.P. Burling and S.W. Reyner. Some Lower Bounds of the Ramsey Numbers n (k, k )[J]. Journal of Combinatorial Theory, Series B, 13 (1972) 168 ~ 169.
  • 9J.B. Shearer.Lower Bounds for Small Diagonal Ramsey Numbers[J]. Journal of Combinatorial Theory,Series A, 42 (1986) 302 - 304.
  • 10R. Mathon.Lower Bounds for Ramsey Numbers and Association Schemes[J]. Journal of Combinatorial, Theory, Series B, 42 (1987) 122-127.

二级参考文献28

  • 1SU W L, LUO H P, LI Q. Lower bounds for multicolor Classical Ramsey Numbers R(q,q,…,q) [J]. Science in China (series A), 1999,42(10):1 019--1 024.
  • 2LUO H P, SU W L, LI Z. The properties of self-complementary graphs and new lower bounds for diagonal Ramscy numbers [ J ]. Australa- sian Journal of Comhinatofics, 2002,25 : 103--116.
  • 3杨照岜 杨重骏.未来数学家的挑战-计算量问题.数学传播,1986,10(2):1-7.
  • 4GOREY M R, JOHNSON D S. Computers and intractability-A guide to theory of NP-completeness[ M]. Freeman and Company , 1979.
  • 5GRAHAM R L, ROTHSCHILD B L,SPENCER J H. Ramsey theory [M]. New York:John Wiley & Sons , 1990.
  • 6李乔.拉姆赛理论[M].长沙:湖南教育出版社,1993.
  • 7ERDOS P..Some remarks on the theory of graphs [J]. Bulletin of the American Mathematical Society, 1947, 53:292--294.
  • 8GREENWOODR E, CLEASON A M. Combinatorial relations and chromatic graphs [ J ]. Canadian Journal of Mathematics, 1955,7:1--7.
  • 9KALBFLEISCH J G. Construction of special edge-chromatic graphs [J]. Canadian Mathematical Bulletin, 1965, 8:575--584.
  • 10BURLING J P, REYNER S W. Some lower bounds of the ramsey numbers n( k ,k) [ J]. Journal of Combinatorial Theory, Series B, 1972, 13:168-169.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部