期刊文献+

一种基于分析稀疏表示的图像重建算法 被引量:2

Image Reconstruction Algorithm Based on Analysis Sparse Representation
下载PDF
导出
摘要 TV-Wavelet-L1(TVWL1)模型因包含全变分(Total-variation,TV)和小波正则化约束,具有较强的图像重建能力。而传统求解TVWL1模型的算法往往忽略了综合/分析稀疏表示方法的方式。本文提出了一个新的求解TVWL1模型的图像重建算法,该算法把图像重建问题分解为几个子问题并交替求解,利用分析稀疏表示特性构建子问题的求解算法。实验结果表明,与已有算法相比,本文提出的算法可以提高重建图像主客观质量。 TV-Wavelet-LI(TVWL1) model which consists of total-variation (TV) and wavelet regularization has great capability in image reconstruction. However, traditional algorithms solving the TVWL1 model for image reconstruction ignore the way of synthesis/analysis sparse representation. A new image reconstruction algorithm is thus proposed to solve TVWL1, where the original signal reconstruction problem is decomposed into multiple much simpler sub-problems which can be solved alternately. In addition, the analysis sparse representation is considered in a sub-problem. Experimental results demonstrate that the proposed algorithm can obviously improve both objective and subjective qualities of reconstruction images com- pared with the existing algorithms.
出处 《数据采集与处理》 CSCD 北大核心 2014年第1期30-35,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61390512 61033004 61170103 61370118)资助项目
关键词 压缩感知 图像重建 贪心算法 TV-Wavelet-L1模型 compressive sensing image reconstruction greedy analysis pursuit TV-Wavelet-L1 model
  • 相关文献

参考文献14

  • 1Candes E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strate-gies[J]. Information Theory, IEEE Transactions on, 2006, 52(12): 5406-5425.
  • 2Cand~s E J, Romberg J, Tao T. Robust uncertainty principles.. Exact signal reconstruction from highly incomplete frequency information [J]. Information Theory, JEEE Transactions on, 2006, 52(2): 489- 509.
  • 3Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on, 2006, 52(4): 1289- 1306.
  • 4Cand~s E, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3) : 969.
  • 5Romberg J. Imaging via compressive sampling[J].Signal Processing Magazine, IEEE, 2008, 25(2): 14-20.
  • 6Lustig M, Donoho D L, Santos J M, et al. Com- pressed sensing MRI[J]. Signal Processing Maga- zine, IEEE, 2008, 25(2): 72-82.
  • 7Yang J, Zhang Y, Yin W. A fast alternating direc- tion method for TVL1-L2 signal reconstruction from partial Fourier data[J]. Selected Topics in Signal Processing, IEEE, 2010, 4(2): 288-297.
  • 8Elad M, Milanfar P, Ruhinstein R. Analysis versus synthesis in signal priors [J]. Inverse Problems, 2007, 23(3).. 947-968.
  • 9Huang J, Zhang S, Metaxas D. Efficient MR image reconstruction for compressed MR imaging[J]. Med-ical Image Analysis, 2011, 15(5): 670-679.
  • 10Beck A, Teboulle M. A fast iterative shrinkage- thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2 (1) : 183-202.

同被引文献17

  • 1黄翔东,王兆华,李文元.用全相位傅氏法重构间断信号[J].通信学报,2005,26(9):93-96. 被引量:1
  • 2Goyal V K, Fletche A K, Rangan R S. Compressive sampling and lossy compression[J]. IEEE Signal Processing Magazine, 2008, 25(2): 48-56.
  • 3Becker S, Bobin J, Cands [J]. NESTA: A fast and accurate first-order method for sparse recovery[J]. Siam Journal on Im- aging Sciences , 2011, 4(1): 1-39.
  • 4Donoho D I., Tsaig Y, Drori I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information, 2012,58(2) :1094-1121.
  • 5Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal of Scientific Computing, 1998,20(1):33 36.
  • 6Dai W,Milenkovic Q. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory,2009,55(5) :2230-2249.
  • 7Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans Inf Theory, 2008,53(12): 4655-4666.
  • 8Blumensath T, Davies M E. Gradient pursuits[J]. IEEE Transactions on Signal Processing,2008,56(6):2370-2386.
  • 9Mohimani H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed norm [J]. IEEE Trans, Signal Process, 2009,57(1):289-301.
  • 10杨海蓉,方红,张成,韦穗.基于回溯的迭代硬阈值算法[J].自动化学报,2011,37(3):276-282. 被引量:22

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部