期刊文献+

三类布尔函数的相关函数研究

Research on Correlation Function for Three Classes of Boolean Functions
下载PDF
导出
摘要 布尔函数的相关函数能刻画其扩散特征和线性结构特征,所以研究相关函数的性质对于布尔函数理论具有重要作用。为此,根据自相关和互相关函数的定义,分析通过迹表示的二次布尔函数f(x)=Tr_1~n(x^(2^i+1)+x(2~′+1))的自相关函数值,给出互相关函数平方的一个表达式C_(f,g)~2(α)=(?)(-1)^(D_(f,g)(a)+D_(f,g)(a+ω)),利用该表达式给出任意三次布尔函数的自相关函数平方和的上界,并借助该上界进一步研究两类迹表示的三次布尔函数的绝对值指标上界问题。 The correlation function of Boolean function can depict the diffusion characteristics and linear structure characteristics, and the properties of correlation function plays an important role in Boolean function theory. According to the definition of auto-correlation functionand cross-correlation function, the auto-correlation function of a special form quadratic Boolean function f(x)=Tr1n(x2i+1+x2j+1)presented in this paper and the expressionis given. Based on it, it gives the upper bound of auto-correlation function of three times Boolean function square, and the upper bounds of absolute indicators of two classes trace Boolean functions are investigated.
出处 《计算机工程》 CAS CSCD 2014年第3期180-183,共4页 Computer Engineering
基金 安徽省自然科学基金资助项目(1208085QF119) 安徽高校省级自然科学研究基金资助项目(KJ2012Z353 KJ2013Z286)
关键词 布尔函数 BENT函数 自相关函数 非线性度 全局雪崩准则 绝对值指标 Boolean function Bent function auto-correlation function degree of nonlinearity Global Avalanche Criterion(GAC) absolute value indicator
  • 相关文献

参考文献5

二级参考文献50

  • 1Fourquet R and Tavernier C.List decoding of second order Reed-Muller and its covering radius implications[C].Proceedings of the WCC 2007,Versailles,France,2007:147-156.
  • 2Dumer I,Kabatiansky G,and Tavernier C.List decoding of Reed-Muller codes up to the Johnson bound with almost linear complexity[C].Proceedings of the IEEE International Symposium on Information Theory,Seattle,WA,2006:138-142.
  • 3Carlet C.Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications[J].IEEE Transactions on Information Theory,2008,54(3):1262-1272.
  • 4Sun G and Wu C.The lower bounds on the second order nonlinearity of three classes of Boolean functions wih high nonlinearity[J].Information Sciences,2009,179(3):267-278.
  • 5Gangopadhyay S,Sarkar S,and Telang R.On the lower bounds of the second order nonlinearity of some Boolean functions[J].Information Sciences,2010,180(2):266-273.
  • 6Gode R and Gangopadhyay S.On second order nonlinearities of cubic monomial Boolean functions[DB/OL].[2009-10-21].http://eprint.iacr.org /2009/502.pdf.
  • 7Charpin P,Pasalic E,and Tavernier C.On bent and semi-bent quadratic Boolean functions[J].IEEE Transactions on Information Theory,2005,51(12):4286-4298.
  • 8Zheng Y and Zhang X M.On plateaued functions[J].IEEE Transactions on Information Theory,2001,47(3):1215-1223.
  • 9Canteaut A,Charpin P,and Kyureghyan G M.A new class of monomial bent functions[J].Finite Fields and Their Applications,2008,14(1):221-241.
  • 10Lidl R and Niederreiter H.Finite Fields[M].Cambridge,U.K:Combridge Univ.Press,1983:54-57,107.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部