期刊文献+

放电等离子体烧结制备钨-钒-铬合金及性能表征 被引量:1

Fabrication and Characterization of Tungsten-Vanadium-Chromium Alloy by Spark Plasma Sintering
原文传递
导出
摘要 利用机械球磨、放电等离子体烧结法制备了质量分数(%,下同)为W-(10~30)V-(10~30)Cr的三元合金,对烧结后的合金进行了显微结构和室温力学性能研究。结果表明,采用放电等离子体烧结可以制得相对密度为99.7%的W.30V-20Cr合金,其实际密度比烧结纯钨降低了49.74%;显微结构分析表明V、Cr可以很好地合金化,形成塑性连续相,包裹在钨分散相的周围,很好地改善了钨合金的力学性能,W-30V-20Cr的抗弯强度为437.13MPa,比烧结纯钨增加了25%,HV硬度为6154MPa;W-30V-20Cr合金具有较高的断裂韧性值,为15.51MPa·m1/2。 W-(10~30)V-(10~30)Cr ternary alloys were fabricated by ball milling and subsequent spark plasma sintering(SPS), their microstructures and mechanical properties at ambient temperature were investigated. The results show that the nearly full dense billet of W-30V-20Cr alloy can be prepared by SPS, its relative density is 99.7%, its actual density is 49.74% lower than that of pure tungsten. The microscopic analysis shows that V and Cr can be alloyed excellently and the plastic continuous phase is formed, which continuously surrounds the tungsten dispersed phase and improves the mechanical properties of tungsten alloys. The W-30V-20Cr alloy has a bending strength of 437.13 MPa which increases by 25% compared to that of the sintered pure tungsten. The W-30V-20Cr alloy has a HV hardness of 6154 MPa, a high fracture toughness of 15.51 MPa.m1/2.
机构地区 北京科技大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第2期501-505,共5页 Rare Metal Materials and Engineering
基金 国家磁约束核聚变能研究专项(2010B109000)
关键词 放电等离子体烧结 钨-钒-铬合金 断裂韧性 spark plasma sintering tungsten-vanadium-chromium alloy fracture toughness
  • 相关文献

参考文献13

二级参考文献35

  • 1许增裕.聚变材料研究的现状和展望[J].原子能科学技术,2003,37(z1):105-110. 被引量:17
  • 2洪文玉,严龙文,钱俊,潘宇东,罗萃文,徐征宇,潘莉,杨青巍,黄渊.HL-2A偏滤器位形的边缘等离子体特性[J].核聚变与等离子体物理,2006,26(2):81-86. 被引量:3
  • 3宋进仁,翟更太,刘朗.聚变装置用石墨材料的研究动向[J].新型炭材料,1996,11(3):27-30. 被引量:5
  • 4冯开明.ITER实验包层计划综述[J].核聚变与等离子体物理,2006,26(3):161-169. 被引量:52
  • 5VERHIEST K, ALMAZOUZI A, WISPELAERE N D, et al. Development of oxides dispersion strengthened steels for high temperature nuclear reactor applications[J]. Journal of Nuclear Materials, 2009, 385(2): 308-311.
  • 6ALLEN T R, TAN L, GAN J, et al. Microstructural development in advanced ferritic martensitic steel HCM12A [J]. Journal of Nuclear Materials, 2006, 351(1 3).. 174-186.
  • 7DUBUSISSON P, SCHILL R, HUGON M P, et al. Behavior of an oxide dispersion strengthened ferritic steel irradiated in Phenix[C]//18th Inter national Symposium on Effects of Radiation in Materials. USA: [s. n.], 1999: 17-19.
  • 8MONNET I, DUBUSISSON P, DERRUYS Y, et al. Microstructural investigation of the stability under irradiation of oxide dispersion strength ened ferritic steels [J]. Journal of Nuclear Materials, 2004, 335(3): 311-321.
  • 9GAN J, ALLEN T R, BIRTCHER R C, et al.The development of metallic nuclear fuels for transmutation applications: Materials challenges [J]. Journal of Metals, 2008, 60(1): 24-28.
  • 10YOSHITAKE T, ABE Y, AKASAKA N, et al. Ring tensile properties of irradiated oxide disper sion strengthened ferritic/martensitic steel claddings [J]. Journal of Nuclear Materials, 2004, 329 333(1): 342-346.

共引文献59

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部