期刊文献+

基于3-D打印技术的韧带-骨复合支架制造与体内植入研究 被引量:8

FABRICATION AND IN VIVO IMPLANTATION OF LIGAMENT-BONE COMPOSITE SCAFFOLDS BASED ON THREE-DIMENSIONAL PRINTING TECHNIQUE
原文传递
导出
摘要 目的为解决韧带重建手术中韧带移植物与宿主骨组织的固定问题,提出采用韧带-骨复合支架进行韧带修复重建的思路,探讨基于3-D打印技术的韧带-骨复合支架制造方法,通过动物实验评价其体内力学与生物学性能。方法采用三维设计软件设计骨支架模型,通过布尔运算生成骨支架负型,用3-D打印技术制作骨支架负型树脂模具,将陶瓷浆料灌注入骨支架负型树脂模具中,凝固并高温烧结获得骨支架。将蚕丝纤维脱胶编织形成韧带支架,与骨支架用固定钉装配形成韧带-骨复合支架。将制备的韧带-骨复合支架植入10只4月龄健康家猪左膝关节前交叉韧带断裂位置,3个月后对再生韧带及韧带-骨界面进行生物力学检测和组织学观察,以仅保留前交叉韧带的右膝关节作为对照。结果生物力学检测显示,对照组前交叉韧带承受的最大拉伸力和蠕变量分别为(1 384±181)N和(0.74±0.21)mm,实验组植入后3个月韧带-骨复合支架分别为(370±103)N和(1.48±0.49)mm,比较差异均有统计学意义(t=11.617,P=0.000;t=—2.991,P=0.020)。HE染色示,实验组骨支架内部有新生骨形成,在韧带支架与宿主骨组织间形成了与自然韧带-骨界面相似的分层结构。结论基于3-D打印技术成功制备韧带-骨复合支架,并在猪体内初步实现了韧带-骨界面的再生。 Objective To solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments. Methods The model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold. Ceramic bone scaffolds were obtained by casting the ceramic slurry in the resin mould and sintering the dried ceramics-resin composites. Ligament scaffolds were obtained by weaving degummed silk fibers, and then assembled with bone scaffolds and bone anchors. The resultant ligament-bone composite scaffolds were implanted into 10 porcine left anterior cruciate ligament rupture models at the age of 4 months. Mechanical testing and histological examination were performed at 3 months postoperatively, and natural anterior cruciate ligaments of the right sides served as control. Results Biomechanical testing showed that the natural anterior cruciate ligament of control group can withstand maximum tensile force of (1 384 ± 181) N and dynamic creep of (0.74 ± 0.21) mm, while the regenerated ligament-bone scaffolds of experimental group can withstand maximum tensile force of (370 ± 103) N and dynamic creep of (1.48 ± 0.49) mm, showing significant differences (t=11.617, P=0.000; t= — 2.991, P=0.020). In experimental group, histological examination showed that new bone formed in bone scaffolds. A hierarchical transition structure regenerated between ligament-bone scaffolds and the host bones, which was similar to the structural organizations of natural ligament-bone interface. Conclusion Ligament-bone composite scaffolds based on 3-D printing technique facilitates the regeneration of biomimetic ligament-bone interface. It is expected to achieve physical fixation between ligament grafts and host bone.
出处 《中国修复重建外科杂志》 CAS CSCD 北大核心 2014年第3期314-317,共4页 Chinese Journal of Reparative and Reconstructive Surgery
基金 国家自然科学基金资助项目(51105298 51323007) 高等学校博士学科点专项科研基金资助项目(20110201120027) 中央高校基本科研业务费专项资金~~
关键词 3-D打印技术 韧带 骨复合支架 骨组织工程 Three-dimensional printing technique Ligament-bone composite scaffold Bone tissueengineering Pig
  • 相关文献

参考文献10

  • 1Spalazzi JP, Doty SB, Moffat KL, et al. Development of controlled ma- trix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng, 2006, 12(12): 3497-3508.
  • 2Guarino V, Causa F, Ambrosio L. Bioactive scaffolds for bone and liga- ment tissue. Expert Rev Med Devices, 2007, 4(3): 405-418.
  • 3Liu H, Fan H, Toh SL, et al. A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials, 2008, 29(10): 1443-1453.
  • 4Fan H, Liu H, Toh SL, et al. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials, 2009, 30(28): 4967-4977.
  • 5Sahoo S, Toh SL, Goh JC. A bFGF-releasing silk/PLGA-based biohy- brid scaffold for ligament/tendon tissue engineering using mesenchy- mal progenitor cells. Biomaterials, 2010, 31(11): 2990-2998.
  • 6Shen WL, Chen X, Chen J, et al. The effect of incorporation of exog- enous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration. Biomaterials, 2010, 31(28): 7239-7249.
  • 7Li X, Bian W, Li D, et al. Fabrication of porous beta-tricalcium phos- phate with microchannel and customized geometry based on gel- casting and rapid prototyping. Proc Inst Mech Eng H, 2011, 225(3): 315-323.
  • 8Li X, Snedeker JG. Wired silk architectures provide a biomimetic ACL tissue engineering scaffold. J Mech Behav Biomed Mater, 2013, 22: 30- 40.
  • 9Lee J, Choi WI, Tae G, et al. Enhanced regeneration of the ligament- bone interface using a poly (L-lactide-co-epsilon- caprolactone) scaf- fold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Acta Biomater, 2011, 7(1): 244-257.
  • 10He P, Sahoo S, Ng KS, et al. Enhanced osteoinductivity and osteo- conductivity through hydroxyapatite coating of silk-based tissue- engineered ligament scaffold. J Biomed Mater Res A, 2013, 101(2): 555-566.

同被引文献134

引证文献8

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部