期刊文献+

硒代蛋氨酸对Aβ_(1-42)诱导N2a细胞损伤的保护作用 被引量:1

Neuroprotective Effect of Selenomethionine Against Injury Induced by Aβ_(1-42) in N2a Cells
原文传递
导出
摘要 探索硒代蛋氨酸(Se-Met)的早期干预对Aβ1-42诱导的Neuro-2A(N2a)细胞损伤的保护作用。将N2a细胞分为对照组、Aβ1-42诱导损伤组、Se-Met组和Se-Met预处理的Aβ1-42组,CCK-8法检测显示不同浓度Se-Met对N2a细胞活力的影响不同,且Se-Met能减弱Aβ1-42诱导N2a细胞活力的降低(P<0.01);DCFH-DA标记检测可见Se-Met预处理明显抑制Aβ1-42引起的N2a细胞内总活性氧(reactive oxygen species,ROS)水平增高,Aβ1-42作用24 h组效果更显著(P<0.05);Western blot检测发现,Se-Met可显著回升Aβ1-42引起的N2a细胞synaptophysin和PSD95水平的降低(P<0.05;P<0.05);同时,Se-Met可显著降低Aβ1-42引起的N2a细胞内LC3-II/LC3-I水平的升高(P<0.05)。因此,Se-Met在一定作用时间和浓度下可以提高N2a细胞的活力,对Aβ1-42引起的N2a细胞ROS水平增高、自噬均有抑制作用,同时缓解Aβ1-42引起的突触损伤;Se-Met对Aβ1-42诱导N2a细胞损伤具有较好的保护作用。 To investigate the effect of Selenomethionine (Se-Met) on amyloid beta peptide (Aβ)1-42)-induced neurotoxicity in Neuro-2A (N2a) cells, N2a cells were divided into 4 subgroups: control, Aβ1-42 model, Se-Mettreated and Se-Met-preincubated Aβ1-42 model group. Cell viability was evaluated by CCK-8 kit and the result showed that different concentrations of Se-Met had different effect on N2a cell viability. Aβ1-42 treatment significantly decreased cell viability compared to the control group, while Se-Met preincubation attenuated Aβ1-42induced cell viability loss (P〈0.05). Levels of ROS (reactive oxygen species) were measured by DCFH-DA probe kit. Pretreatment with Se-Met significantly decreased the level of ROS in Aβ1-42 treated cells (P〈0.05). Meanwhile, Se-Met pretreatment significantly restored the levels of synaptophysin and PSD95 and inhibited Aβ1-42-induced increase in the level of LC3-IULC3-I (P〈0.05). These data suggested that Se-Met could increase N2a cell viability at a certain concentration and a period of time, inhibit the increase of ROS generation and autophagy, and ameliorate the synaptic loss induced by Aβ1-42. Thus, Se-Met plays an important role in neuroprotection of Aβ-induced neuronal toxicity.
出处 《中国细胞生物学学报》 CAS CSCD 北大核心 2014年第2期211-216,共6页 Chinese Journal of Cell Biology
基金 深圳市科技研发资金基础研究项目(批准号:JC201005280537A) 深圳市战略性新兴产业发展专项资金(批准号:JCYJ20120817163755064)资助的课题~~
关键词 阿尔茨海默病 硒代蛋氨酸 N2a AΒ1-42 突触相关蛋白 自噬 Alzheimer's disease selenomethionine N2a Aβ1-42 synaptophysin PSD 95 autophagy
  • 相关文献

参考文献26

  • 1Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropatho- logical alterations in Alzheimer disease. Cold Spring Harb Per- spect Med 2011; 1(1): a006189.
  • 2Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H, Lin MT, et al. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease. PLoS One 2010; 5(9): 12845.
  • 3Son SM, Jung ES, Shin H J, Byun J, Mook-Jung I. A[3-induced formation of autophagosomes is mediated by RAGE-CaMKKI3- AMPK signaling. Neurobiol Aging 2012; 33(5): 1006.e11-23.
  • 4尤寿江,石际俊,张艳林,刘春风.ROS介导的自噬及其在相关疾病中的作用[J].中国病理生理杂志,2011,27(1):187-190. 被引量:26
  • 5Ishrat T, Parveen K, Khan MM, Khuwaja G, Khan MB, Yousuf S, et al. Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer's type. Brain Res 2009; 1281: 117-27.
  • 6van Eersel J, Ke YD, Liu X, Delerue F, Kril J J, GOtz J, et al. Sodium selenate mitigates tan pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proc Natl Acad Sci USA2010; 107(31): 13888-93.
  • 7Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's dis- ease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
  • 8Bate C, Williams A. Amyloid-β-induced synapse damage is me- diated via cross-linkage of cellular prion proteins. J Biol Chem 2011; 286(44): 37955-63.
  • 9Allen JW, Eldadah BA, Huang X, Knoblach SM, Faden AI. Mul- tiple caspases are involved in 13-amyloid-induced neuronal apop- tosis. J Neurosci Res 2001; 65(1): 45-53.
  • 10Feng Y, Wang X. Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Longev 2012; 2012: 472932.

二级参考文献86

  • 1朱道立.突触长时程增强形成与学习记忆的相关研究[J].生物学通报,2004,39(7):6-8. 被引量:6
  • 2Bressloff P C, Earnshaw B A. A dynamic corral model of receptor trafficking at a synapse[ J]. Biophys J, 2009,96 :1786-1802.
  • 3Blitzera R D, Iyengara R, Landan E M. Postsynaptic signaling networks: cellularcogwheels underlying long-term plasticity [ J ]. Biol Psychiatry, 2005,57 : 113-119.
  • 4van Zundert B, Yoshiil A, Constantine-Paton M. Receptorcompartmentalization and trafficking at glutamate synapses: a developmentalproposal [ J ]. Trends Neurosci, 2004,27 : 428-437.
  • 5De Robertis E, Bennett H S. Submicroscopic vesicular component in the synapse[ J]. Fed Proc, 1954,15:35-42.
  • 6Sheng M. Molecular organization of the postsynaptic specialization[J]. Proc Natl Acad Sci USA, 2001,98:7058- 7061.
  • 7Kennedy M B. The postsynaptic density at glutamatergic synapses [ J ]. Trends in Neurosci, 1997,20 : 264-268.
  • 8Harris B Z, Lim W A. Mechanism and role of PDZ domains insignaling complex assembly [ J ]. J Cell Sci, 2001,114 : 3219- 3231.
  • 9Songyang Z, Fanning A S, Fu C, et al. Recognition of uniquecarboxy lterminal motifs by distinct PDZ domains [J]. Science, 1997,275:73-77.
  • 10Bredt D S. Sorting out genes that regulate epithelial and neuronal polarity[ J ]. Cell, 1998,94:691-694.

共引文献59

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部