期刊文献+

基于FCM的终端区交通态势识别 被引量:11

Identification of Terminal Area Traffic Situation Based on FCM
下载PDF
导出
摘要 终端区交通态势的日益拥挤,一定程度上造成航班的延误,给航空公司及旅客带来了极大损失。为了对终端区交通拥挤进行有效的识别和疏导,对终端区交通态势进行了研究。通过采集的雷达数据,提取影响终端区交通态势的属性指标,运用模糊C-均值聚类(FCM)方法建立了终端区交通态势识别模型,模型可快速准确地识别交通态势。以某终端区为例,验证了模型的有效性。 Traffic situation of terminal area, which becoming increasingly crowded, to some extent caused flight delays, brought great losses to airlines and passengers. This paper studies the traffic situation of ter- minal area, in order to effectively identifying and diverting. The identification model, which using fuzzy C- means clustering (FCM)method to establish the traffic situation of terminal area over the airport recogni- tion model by collecting radar data and extracting the indicators of traffic situation of terminal area. This model can identify traffic situation quickly and accurately. Take a terminal area as an example and vali- date it.
出处 《航空计算技术》 2014年第1期1-4,8,共5页 Aeronautical Computing Technique
基金 国家自然基金重点项目资助(61039001) 中央高校基本科研业务费专项资助(3122013SY03)
关键词 终端区 态势 FCM terminal area situation FCM
  • 相关文献

参考文献11

  • 1Alexander D Donaldson, John R Hansman. Improvement of Terminal Area Capacity in the New York Airspace [ D ]. MIT International Center for Air Transportation (ICAT) ,2011.
  • 2杨尚文,胡明华,赵征,李晓明,常勋.终端区动态容量预测模型[J].南京航空航天大学学报,2012,44(1):113-117. 被引量:14
  • 3Lee K, Feron E, Pritchett A. Air Traffic Complexity: An Input - output Approach[ C ]. Proeeding of the 2007 American Con- trol Conference, New York : IEEE Press,2007:474 - 479.
  • 4赵嶷飞,周阳.五边到场交通态势安全评估研究[J].中国安全科学学报,2011,21(6):99-103. 被引量:8
  • 5Laudeman I, Shelden S, Branstrom R. Dynamic Density: An Air Traffic Management Metric [ C ]. Proceding of the First Federal Aviation Administration. Alexandria: National Aero- nautics and Space Administration,1998.
  • 6赵宗贵,李君灵,王珂.战场态势估计概念、结构与效能[J].中国电子科学研究学院,2010,6(3):227-230.
  • 7牛建峰,丛浩哲,王俊.长三角公路网交通安全态势评估关键技术的探讨[C].第五届中国智能交通年会暨第六届国际节能与新能源汽车创新发展论坛,北京:智能交通.2009:389-394.
  • 8ENDSLEYMR Endsleymr. Measurement of Situation Awam- ness in Dynamic Systems [ J ]. The Journal of the Human Factors and Erqonomics Society, 1995,37( 1 ) :65 -84.
  • 9张德.空中交通复杂性的分析技术研究[D].天津:中国民航大学,2010.
  • 10Chang R L P, Pavlidis T. Fuzzy Decision Tree Algorithms [ J ]. Systems, Man and Cybernetics, IEEE Transactions on, 1977,7 ( 1 ) :28 - 35.

二级参考文献19

  • 1蒋忠中,汪定伟.有时间窗车辆路径问题的捕食搜索算法[J].控制与决策,2007,22(1):59-62. 被引量:20
  • 2丁泓钧.基于空域复杂度的管制员工作负荷研究[D].天津:中国民航大学,2009.
  • 3张德.空中交通复杂性的分析技术研究[D].天津:中国民航大学,2010.
  • 4赵嶷飞,张德.空中交通复杂性的概念及方法研究[A].第一届中国航空通信导航监视及空管(CNS/ATM)学术会议[C],2010:72-75.
  • 5中国民用航空总局.中国民用航空空中交通管理规则[Z],1999.
  • 6K. Lee, E. Feron, A. Peitchett. Air traffic complexity: An input-output approach[A]. 7th USA/Europe Air Traffic Management R & D Seminar[C], 2007:474 -479.
  • 7国际民航组织.国际民航组织8168文件:航空器的运行[Z],2006.
  • 8Krozel J, Mitchell J S B, Polishchuk V, et al. Ca- pacity estimation for airspaces with convective weather contraints[C]//Proceedings of AIAA Guid- ance, Navigation, and Control Conference. Hilton Head: American Institute of Aeronautics and Astro- nautics, 2007: 1-15.
  • 9Zou J, Krozel J W, Krozel J, et al. Two methods for computing directional capacity given convective weather constraints [C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Chicago: American Institute of Aeronautics and As- tronautics, 2009: 1-15.
  • 10Song L, Wanke C, Greenbaum D, et al. Methodolo- gies for estimating the impact of severe weather on airspace capacity[C]//The 26th Congress of Inter- national Council of the Aeronautical Sciences. An- chorage: ICAS Secretariat, 2008: 1-12.

共引文献21

同被引文献88

  • 1陈德望.基于模糊聚类的快速路交通流状况分类[J].交通运输系统工程与信息,2005,5(1):62-67. 被引量:34
  • 2洪龙,肖奚安,朱梧槚.中介真值程度的度量及其应用(I)[J].计算机学报,2006,29(12):2186-2193. 被引量:78
  • 3姚智胜,邵春福,熊志华,岳昊.基于主成分分析和支持向量机的道路网短时交通流量预测[J].吉林大学学报(工学版),2008,38(1):48-52. 被引量:47
  • 4MENON P K,TANDALE M D,KIM J,et al.A frameworkfor stochastic air traffic flow modeling and analysis[C]∥AIAA. 2010 AIAA Guidance, Navigation, and ControlConference.Reston:AIAA,2010:1-28.
  • 5HU Jun,WU Zhen-ya.Research on the net amount of airtraffic network[C]∥SPIE.2012International Conference onGraphic and Image Processing.Bellingham:SPIE,2013:1-7.
  • 6ZHANG Hong-hai,XU Yan,YANG Lei,et al.Macroscopicmodel and simulation analysis of air traffic flow in airportterminal area[J].Discrete Dynamics in Nature and Society,2014,2014:1-15.
  • 7REYNOLDS T G.Air traffic management performance assessmentusing flight inefficiency metrics[J].Transport Policy,2014,34:63-74.
  • 8HOFFMAN B,KROZEL J,PENNY S,et al.A cluster analysisto classify days in the national airspace system[C]∥AIAA.2003AIAA Guidance,Navigation,and Control Conference andExhibit.Reston:AIAA,2003:1-12.
  • 9CHATTERJI G B,MUSAFFAR B.Characterization of daysbased on analysis of national airspace system performancemetrics[C]∥AIAA.2007 AIAA Guidance,Navigation,andControl Conference and Exhibit.Reston:AIAA,2007:1-15.
  • 10MUKHERJEE A,GRABBE S,SRIDHAR B.Classificationof days using weather impacted traffic in the national airspacesystem[C]∥AIAA.2013Aviation Technology,Integration,and Operations Conference.Reston:AIAA,2013:1-11.

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部