期刊文献+

齿轮点蚀的多通道数据融合识别方法 被引量:5

Multi-channel Data Fusion for the Identification of Gear Pitting
下载PDF
导出
摘要 针对齿轮箱振动信号中混杂其他零部件振动频率的问题,提出一种基于小波包分解独立分量分析(wavelet package independent component analysis,简称WPICA)和多维经验模式分解(multivariate empirical mode decomposition,简称MEMD)的齿轮箱齿面点蚀故障信号的多通道数据融合识别方法。首先,利用一种窄带独立分量分析(sub-band decomposition independent component analysis,简称SDICA)方法—WPICA,从水泵机组多通道信号中提取齿轮箱振源,确定齿轮箱振动包含的特征频率成分;其次,借助MEMD分解多通道机组振动信号,将所获得的多维固有模式函数(intrinsic mode function,简称IMF)进行矩阵互信息运算,完成多通道数据的融合;最后,通过定义IMF故障敏感因子,确定故障敏感IMF的阶数并获得了齿轮点蚀故障的特征频率。数据分析结果证明了本研究方法的有效性。 Aiming to separate the vibration signals of the gearbox from the other disturbing components,a new multi-channel data fusion procedure,combining the wavelet package independent component analysis(WPICA)and multivariate empirical mode decomposition(MEMD),is proposed for the identification of gear pitting.First,the gearbox vibration source is extracted by applying the WPICA,which is a kind of sub-band decomposition independent component analysis(SDICA)to the multi-channel pump-set signals.Second,multi-dimensional IMFs are obtained through the decomposition of MEMD.The mutual information between different IMF matrices in order to implement the formulation of fault sensitive intrinsic mode function(IMF)is calculated at the last step.In case the fault sensitive IMF is found out,the frequency dominated in this IMF is determined as the characteristic frequency of gear pitting.Data analysis shows the efficiency of the proposed procedure.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2014年第1期63-68,190,共6页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(11072214) 上海大学理工类创新基金资助项目(K.10-0109-13-007)
关键词 齿轮箱 齿轮点蚀 小波包分解独立分量分析 多维经验模式分解 gearbox gear pitting wavelet package independent component analysis(ICA) multivariate empirical mode decomposition(EMD)
  • 相关文献

参考文献16

  • 1Wang W J,McFadden P D.Application of wavelets to gearbox vibration signals for fault detection[J].Journal of Sound and Vibration,1996,192(5):927-939.
  • 2刘婷婷,任兴民.独立分量分析在机械振动信号分离中的应用[J].振动.测试与诊断,2009,29(1):36-41. 被引量:16
  • 3毕锦烟,李巍华.基于半监督模糊核聚类的齿轮箱离群检测方法[J].机械工程学报,2009,45(10):48-52. 被引量:7
  • 4雷亚国,何正嘉,林京,韩冬,孔德同.行星齿轮箱故障诊断技术的研究进展[J].机械工程学报,2011,47(19):59-67. 被引量:153
  • 5Comon P.Independent component analysis,a new concept[J].Signal Process,1994,36(3):287-314.
  • 6Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London.Series A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
  • 7Lin S L,Tung P C,Huang N E.Data analysis using a combination of independent component analysis and empirical mode decomposition[J].Physical Review E,2009,79(6):1-6.
  • 8Ypma A,Leshem A,Duin P W R.Blind separation of rotating machine sources:bilinear forms and convolutive mixtures[J].Neurocomputing,2002,49 (1-4):349-368.
  • 9Zhao X,Patel T H,Zuo M J.Multivariate EMD and full spectrum based condition monitoring for rotating machinery[J].Mechanical Systems and Signal Processing,2012,27:712-728.
  • 10曹冲锋,杨世锡,杨将新.基于白噪声统计特性的振动模式提取方法[J].机械工程学报,2010,46(3):65-70. 被引量:18

二级参考文献111

共引文献190

同被引文献33

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部