纸皮核桃引种表现及早期丰产栽培技术
摘要
东平县位于山东省西部,北部山区面积约占全县总面积的1/3,属青石山地,山区群众栽培核桃历史悠久,但核桃园普遍存在产量低、质量差的问题.为此,我们引进了新疆纸皮核桃,于2006-2013年进行栽培试验,同时进行大面积技术推广,到2013年全县以新疆纸皮核桃为主栽品种基地面积达到3 000 hm2,东平县被国家林业局命名为“中国核桃之乡”.
出处
《河北果树》
2014年第2期27-27,29,共2页
Hebei Fruits
二级参考文献36
-
1[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu.
-
2[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801.
-
3[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181.
-
4[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297.
-
5[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114.
-
6[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84.
-
7[7]Beyer, K.S., Goldstein, J., Ramakrishnan, R., et al. When is 'nearest neighbor' meaningful? In: Beeri, C., Buneman, P., eds. Proceedings of the 7th International Conference on Data Theory, ICDT'99. LNCS1540, Jerusalem, Israel: Springer, 1999. 217~235.
-
8[8]Ester, M., Kriegel, H.-P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noises. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 1996. 226~231.
-
9[9]Ester, M., Kriegel, H.-P., Sander, J., et al. Incremental clustering for mining in a data warehousing environment. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York: Morgan Kaufmann, 1998. 323~333.
-
10[10]Sander, J., Ester, M., Kriegel, H.-P., et al. Density-Based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998,2(2):169~194.
共引文献85
-
1刘英林,陈玉柱,丁文静,程红云.钢卷表面缺陷分布特征发现方法研究[J].冶金自动化,2020,44(1):27-31. 被引量:2
-
2毛颖颖,杨新凯.融合拓扑势的自适应层次聚类算法研究[J].计算机应用研究,2020,37(S01):37-39.
-
3李华,贾雪.基于FM度量的自适应K-Means聚类的工业生产运行基准挖掘[J].长春大学学报,2022,32(4):22-27.
-
4Qi Zhang,Jianshe Cao,Yanfeng Sui.Development of a research platform for BEPCⅡ accelerator fault diagnosis[J].Radiation Detection Technology and Methods,2020,4(3):269-276.
-
5郭景峰,赵玉艳,边伟峰,李晶.基于改进的凝聚性和分离性的层次聚类算法[J].计算机研究与发展,2008,45(z1):202-206. 被引量:15
-
6王建会,申展,胡运发.一种实用高效的聚类算法[J].软件学报,2004,15(5):697-705. 被引量:26
-
7张虎,郑家恒,刘江.语料库词性标注一致性检查方法研究[J].中文信息学报,2004,18(5):11-16. 被引量:9
-
8杨涛,李龙澍.一种基于粗糙集聚类的数据约简算法[J].系统仿真学报,2004,16(10):2195-2197. 被引量:5
-
9张虎,郑家恒,刘江.汉语语料库词性标注自动校对方法研究[J].计算机应用,2005,25(1):17-19. 被引量:1
-
10栾丽华,吉根林.一种基于四叉树的快速聚类算法[J].计算机应用,2005,25(5):1001-1003. 被引量:6
-
1朱毅,刘芳.真真假假纸皮核桃[J].婚姻与家庭(婚姻情感版),2015,0(5):63-63.
-
2早熟核桃新品种——辽宁6号[J].山西果树,2010(6):58-58.
-
3李成,刘金强,李俊德,张云书,张雪杰.新疆纸皮核桃的引种表现及栽培[J].特种经济动植物,2009,12(7):44-45.
-
4布尼亚孜汗.吐尔.新疆核桃丰产栽培技术[J].新疆农业科技,2007(2):22-23. 被引量:7
-
5李成,刘金强,李俊德,张云书,张雪杰.新疆纸皮核桃的引种表现及栽培技术[J].落叶果树,2009,41(4):64-64.
-
6杨建华.新疆纸皮核桃丰产栽培技术[J].北京农业(中旬刊),2015(5). 被引量:2
-
7王建春,李娜.山地新疆纸皮核桃早期丰产栽培技术[J].果农之友,2008(4):29-29.
-
8崔津卫.核桃春季建园及管理技术[J].河北果树,2016(3):36-36. 被引量:1
-
9小尾寒羊新法养殖两招[J].农产品市场,2004,0(27):13-13.
-
10梁玉本.薄壳核桃优良品种简介[J].烟台果树,2007(1):36-37. 被引量:3