期刊文献+

基于模糊聚类的雷达信号分选 被引量:15

A Study on Sorting of Radar-Signals Based on Fuzzy Clustering
下载PDF
导出
摘要 为克服传统信号分选算法的局限性,采用了基于模糊聚类分析的雷达脉冲信号分选方法。首先介绍了模糊聚类的基本原理和具体步骤,利用熵权法对不同雷达信号特征参数增加了加权系数,其次建立了有效性评价模型来确定最佳聚类,并进行了信号分选仿真实验。利用该方法进行模糊聚类时无需设置阈值,仿真结果证明分选方法的正确性,验证了此方法的有效性和可行性。该方法能够处理多个雷达脉冲信号,是一种解决多脉冲信号分选问题的新途径。 In order to overcome the limitation of traditional radar-signals sorting algorithm, a radar pulse signal sorting method based on fuzzy clustering is presented. Firstly, the basic principle and steps of fuzzy clustering are introduced. The weights of parameters are determined according to entropy. The model of effective evaluation is built to determine the best sorting. Finally, the experiment is simulated. The simulation shows that the method is effective and feasible. The method fits for processing a large amount of data. It provides a new way to solve sorting problems of dense and complicated pulse signals.
出处 《火力与指挥控制》 CSCD 北大核心 2014年第2期52-54,57,共4页 Fire Control & Command Control
基金 "十二五"国防预研基金资助项目(41101020207)
关键词 模糊聚类 雷达信号分选 熵权 有效性评价模型 fuzzy cluster, radar-signal sorting, entropy weight, model of effective evaluation
  • 相关文献

参考文献8

  • 1罗景青.雷达对抗原理[M].北京:解放军出版社,2003.
  • 2Kohonen T. The Self-Organizing Map [J]. IEEE Decision, 1990,78 (9) :1464 - 1480.
  • 3Wang W, Yang J, Muntz R. STING:A Statistical Information Grid Approach to Spatial Data Mining[ C ]// Proc. of the 23rd International Conference on very Large Data Bases , 1997.
  • 4Agrawal R , Gehrke J , Gunopulcs D. Automatic Subspace Clustering of High Dimensional Data for Data Mining Application [C]// Proc. of ACM SIGMOD Intconfon Management on Data, Seattle , WA , 1998.
  • 5Guha S , Rastogi R , Shim K. Cure :An Efficient Clustering Algorithm for Large Database [C] // Proc. of ACM-SIGMOND Int, Conf , Management on Data, Seattle, Washington , 1998.
  • 6刘旭波,司锡才.基于改进的模糊聚类的雷达信号分选[J].弹箭与制导学报,2009,29(5):278-282. 被引量:15
  • 7赵德滨,宋利利,闫纪红.基于模糊聚类分析的特征识别方法及其应用[J].计算机集成制造系统,2009,15(12):2417-2423. 被引量:15
  • 8杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:192

二级参考文献19

共引文献289

同被引文献199

引证文献15

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部