期刊文献+

智能空间下基于时序直方图的人体行为表示与理解 被引量:5

Human Activity Representation and Recognition Based on Temporal Order Histogram in Intelligent Space
下载PDF
导出
摘要 为了实现在智能空间下理解人体行为,该文提出了一种基于时序直方图的人体行为表示方法,并设计了基于softmax回归分析的行为理解算法.将传感器的输出状态所对应的离散值的编号定义为事件项;提出了事件直方图的概念以表征事件项的发生频率,提出了时序直方图的概念以表示传感器序列的时序信息;为了降低过拟合的风险,设计了时序模式选择算法以得到候选特征集,基于互信息准则进行特征选择,完成行为的表示;最终,基于选择的特征子集及softmax回归分析实现了人体的行为理解.实验结果表明,该文提出的特征表示方法可以较好的表示外部传感器序列捕获的人体行为模式,同时softmax回归分析可以较好的实现人体行为的理解,并取得了良好的效果. In order to recognize human activity in intelligent space, a novel activity representation method based on temporal order histogram was presented, and softmax regression was used to design the recognition algorithm. Ambient sensors were used to collect data and based on these data human activity recognition was realized. In order to model the sensor data sequences, the concept of event item was put forward. Event histogram and temporal order histogram were put forward to represent the human activity. In order to decrease the risk of over fitting, feature selection algorithm was designed to obtain the candidate temporal order feature sets, and mutual information was used to select the final features. At last, softmax regression was used to realize the human activity recognition. Experimental results showed that the method can better realize human activity recognition.
出处 《计算机学报》 EI CSCD 北大核心 2014年第2期470-479,共10页 Chinese Journal of Computers
基金 国家自然科学基金(61075092 61203341) 国家"八六三"高技术研究发展计划项目基金(2009AA04Z220) 山东省自然基金(ZR2011FM011) 山东省高等学校科技发展计划(TJY1112)资助~~
关键词 智能空间 人体行为理解 直方图 softmax回归 物联网中图法 intelligent space human activity recognition histogram softmax regression Internet of Things
  • 相关文献

参考文献21

  • 1Rashidi P, Cook D J. Discovering activities to recognize and track in a smart environment. IEEE Transactions on Know ledge and Data Engineering, 2011, 23(4) : 527-539.
  • 2Yang L Q, Wang F Y. Driving into intelligent spaces with pervasive communications. IEEE Intelligent Systems, 2007, 22(1): 12 15.
  • 3Tapia E M, Intille S S, Larson K. Activity recognition in the home setting using simple and ubiquitous sensors//Proceed- ings of the International Conference of Pervasive Computing. Linz, Austria, 2004:158 175.
  • 4Logan B, Healey J, Philipose M, et al. A long-term evalua tion of sensing modalities for activity recognition//Proceed ings of the 9th International Conference of Ubiquitous Computing. Innsbruck, Austria, 2007:483-500.
  • 5Wilson D, Atkeson C. Simultaneous tracking and activity recognition using many anonymous, binary sensors// Proceedings of the International Conference of Pervasive Computing. Munich, Germany, 2005:62-79.
  • 6Gu Tao, Wang Liang, Wu Zhan Qing, et al. A pattern mining approach to sensor-based human activity recognition. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(9): 1359 1372.
  • 7Stikic M, Huynh T, Laerhoven K V, Schiele B. ADL recog nition based on the combination of RFID and accelerometer sensing//Proceedings of the International Conference of Per vasive Computing Technologies for Heahhcare. Tampere, Finland, 2008:245-250.
  • 8Philipose M, Fishkin K P, Perkowitz M, et al. |nferring activities from interactions with objects. IEEE Pervasive Computing, 2004, 3(4): 50 57.
  • 9Cook D J, Das S. Pervasive computing at scale: Transfor ruing the state of the art. Journal of Pervasive and Mobile Computing, 2012, 8(1): 22-35.
  • 10De D, Song W, Tang S, el al. Activity aware sensor net work in smart environments. Journal of Pervasive and Mobile Computing, 2012, 8(5) : 730 750.

同被引文献60

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2Aggarwal J K, Ryoo M S. Human activity analysis: A review[J]. ACM Computing Surveys, 2011, 43(3): No.16.
  • 3Weinland D, Ronfard R, Boyer E. A survey of vision- based methods for action representation, segmentation and recognition[J]. Computer Vision and Image Understanding, 2011,115(2): 224-241.
  • 4Cheng L :, Sun Q, Su H, et al. Design and implementation of human-robot interactive demonstration system based on Kinect [C]//Proceedings of the 24th Chinese Control and Decision Conference. Piscataway, USA: IEEE, 2012: 971-975.
  • 5Wu J X, Osuntogun A, Choudhury T, et al. A scalable ap- proach to activity recognition based on object use[C]//IEEE In- ternational Conference on Computer Vision. Piscataway, USA: IEEE, 2007: 1-8.
  • 6Li C C, Chen Y Y. Human posture recognition by sim- ple rules[C]//2006 1EEE International Conference on Systems, Man, and Cybernetics. Piscataway, USA: IEEE, 2007: 3237- 3240.
  • 7Rodriguez M D, Ahmed J, Shah M. Action MACH: A spatio- temporal maximum average correlation height filter for action recognition[C]//IEEE Conference on Computer Vision and Pat- tern Recognition. Piscataway, USA: IEEE, 2008: 3001-3008.
  • 8Biswas J, Veloso M. Depth camera based indoor mobile robot localization and navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2012: 1697-1702.
  • 9Noel R R, Salekin A, Islam R. A natural user interface class- room based on Kinect[J]. IEEE Learning Technology, 2011, 13(4): 59-61.
  • 10Rogers III J G, Christensen H I. A conditional random field model for place and object classification[C]//IEEE Internation- al Conference on Robotics and Automation. Piscataway, USA: IEEE, 2012: 1766-1772.

引证文献5

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部