期刊文献+

基于谓词执行信息分析的自适应缺陷定位算法 被引量:7

Self-Adaptive Fault Localization Algorithm Based on Predicate Execution Information Analysis
下载PDF
导出
摘要 查找程序中缺陷代码所在的位置是一项值得深入开展的研究,同时也是实际软件调试过程中所面临的一个难题,这一过程往往需要耗费大量的时间和人力资源.研究软件缺陷定位的一类重要方法是基于谓词的统计学缺陷定位方法(简称PBSFL).PBSFL通过比较程序运行成功与失败时谓词的执行信息差异来获得谓词与缺陷的关联程度.然而实验研究发现,固定算法中信息利用的强度会造成信息利用不足或过分利用现象的发生,导致现有PBSFL方法对某些缺陷定位不够准确.针对这一问题,文中设计了一种基于谓词执行信息分析的自适应缺陷定位算法,该算法通过分析测试用例运行时谓词的执行情况来动态地为每个谓词选择合适的信息利用强度.实验结果表明,该方法在Siemens和space两个程序包上表现出很好的定位效果以及定位稳定性. Finding the location of a fault in code is an important research and practical problem, which often requires much time and manual effort. Predicate-based statistical fault localization (PBSFL) is a promising method, which obtains the correlative relationship between predicates and faults by comparing the predicate execution information in both correct and incorrect runs. However, experiment results show that existing PBSFL methods fail to locate some faults because they use predicate execution information in a fixed intensity, which may cause insufficient or excessive usage. To solve the problem, we propose a new method, called self-adaptive fault localization algorithm based on predicate execution information analysis, which dynamically select the intensity of information utilization for each predicate through the analysis of test cases run. Experimental results demonstrate that our approach performs well in both accuracy and stability for localizing faults in subject programs of the Siemens and space suites.
出处 《计算机学报》 EI CSCD 北大核心 2014年第3期500-511,共12页 Chinese Journal of Computers
基金 国家自然科学基金(60904066 61003027) 国家科技重大专项经费(2012ZX01039-004)资助~~
关键词 统计学缺陷定位 谓词执行信息 自适应 软件测试 程序分析中图法 statistical fault localization predicate execution information self-adaptive software testing program analysis
  • 相关文献

参考文献1

共引文献10

同被引文献36

  • 1Naish L, Lee H J, Ramamohanarao K. A model for spectra-based software diagnosis[J]. ACM Trans on Software Engineering and Methodology, 2011,20 ( 3 ) : 1 - 32.
  • 2Jones J A, Harrold M J, Stasko J assist fault localization[ C]//Pruc ware Engineering. 2002:467-477.
  • 3Visualization of test informalion to of [ntemational Conference on Soft- Jones J A, Harrold M J. Empirical evaluation of the tarantula automatic fauh-localizalion technique [ C ]//Proc of International Conference on Automated Software Engineering. 2005:273-282.
  • 4Abreu R, Zoeteweij P, Gemund A J C V. An evaluation of similarity coefficients for software fault localization [ C ]//Proc of Pacific Rim In- ternational Symposium on Dependable Computing. 2006:39-46.
  • 5Abreu R, Zoeteweij P, Gemun,t A J C . On the accuracy of spec- trum-based fault localization [ C ]//Proc of Testing: Academic and In- dustrial Conference on Practice md Research Techniques. 2007:89-98.
  • 6Wong W E, Qi Yu, Zhao Lei, et al. Effective fault localization using code coverage [ C ]//Proc of Annual International Computer Software and Applications Conference. 2(107:449-456.
  • 7Wong W E, Debroy V, Choi B A family of c decoverage-based heu- ristics for effective fault localiz.ation [ J]. Journal of Systems and Software ,2010,83( 1 ) : 188-208.
  • 8Liblit B, Aiken A, Zheng A X, et al. Bug isolation via remote pro- gram sampling[ C ]//Proc of Conference on Programming Language Design and Implementation. 2003 : 141-154.
  • 9Liblit B, Naik M, Zheng A X, et al, Scalable statistical bug isolation [ C ]//Proc of Conference on Programming Language Design and Im- plementation. 2005 : 15- 26.
  • 10Liu Chao, Yan Xifeng, Fei Long, et al. SOBER: statistical model- based bug localization [ C ]//Proc of European Software Engineering Conference on Held Jointly with Intornational Symposium on Founda- tions of Software Engineering. 2005:286-295.

引证文献7

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部