期刊文献+

基于模糊聚类的推测多线程划分算法 被引量:19

A FCM-Based Thread Partitioning Algorithm for Speculative Multithreading
下载PDF
导出
摘要 推测多线程(Speculative Multithreading,SpMT)技术是一种实现非规则程序自动并行化的有效途径.然而,如何有效评估由诸如控制、数据依赖等因素导致的多种并行开销并实现最优线程划分一直是制约加速比性能提升的关键问题.基于启发式规则的传统划分方法虽然可以取得一定的加速效果,但由于启发式规则只能对多种并行开销进行定性评估,因而导致只能得到经验上较优的线程划分.针对传统划分方法的局限性,文中首次提出并实现了一种基于模糊聚类的线程划分方法.在该方法中,作者首先提出一种评估模型来定量评估各种并行开销,然后通过深入分析各种并行开销来确定最佳的线程解搜索空间,最终利用聚类方法实现有效线程解空间搜索以求取更优的线程划分.基于Olden程序集的测试结果表明,文中提出的线程划分方法可以有效地对非规则程序进行划分,其平均加速比可达到1.85. Speculative multithreading (SpMT) technology is an effective mechanism for automat ic parallelization of irregular programs. Selecting optimal thread partitioning solution by effectively assessing the speculative parallelization overheads is a key issue for the speedup performance improvement. However, most existing thread partitioning methods are still based on simple heu- ristics rules to select speculative threads. Because these heuristics rules can only be used to indirectly estimate the speculative multithreaded execution overheads and simply tackle individual overheads, these methods can only get the empirical optimal speculative thread solution. To over- come the limitation of these existing methods, in this paper, we first propose a fuzzy c-means (FCM) algorithm based thread partitioning method which can be used to effectively search the solution space of speculative threads and get the optimal solution. In this method, we effectively determine the solution space of speculative threads based on the analysis of several overheads. Meanwhile, we design and implement the cluster validity function by building a cost estimation model. The experimental results show that the proposed method can effectively search the solution space of speculative threads and we can indeed get better performance. On average, we achieve an average speedup of 1.85 on Olden benchmark suits.
出处 《计算机学报》 EI CSCD 北大核心 2014年第3期580-592,共13页 Chinese Journal of Computers
基金 国家"八六三"高技术研究发展计划项目基金(2008AA01Z136) 国家自然科学基金(61173040)资助~~
关键词 推测多线程 线程划分 模糊聚类 自动并行化 代价评估中图法 speculative multithreading thread partitioning fuzzy c-means clustering automatic parallelization cost estimation
  • 相关文献

参考文献1

二级参考文献10

  • 1Grunewald W,Ungerer T.A multithreaded processor de-signed for distributed shared memory system[].Proceedings of the International Conference on Advancesin Parallel and Dis-tributed Computing.1997
  • 2Pellerin D,Thibault S.Practical FPGA Programming in C[]..2005
  • 3Mercaldi M,Swanson S,Petersen Aet al.Instruction sched-uling for a tiled dataflow architecture[].Proceedings of theth International Conference on Architecture Support for Programming Languages and Operating Systems(ASPLOS).2006
  • 4Marzulo L,Franca F,Costa VS.Transactional WaveCache:Towards,speculative and out-of-order dataflow execution of memory operations[].Proceedings of theth International Symposiumon Computer Architecture and High Performance Computing.2008
  • 5Wu B F,Pei S W,Zhu K,Yu Q.Data-driven multithreading programming model based on DDF[].Proceedings of thend International Conference on Pervasive Computing and Appli-cations(ICPCA).2007
  • 6Sohi G,Breach S,Vijaykumar T N.Multiscalar proces-sors[].Proceedings of thend Annual International Symposi-umon Computer Architecture(ISCA).1995
  • 7Madriles C,Garcia-quinones C,Sanchez J et al.Mitosis:A speculative multithreaded processor based on precomputation slices[].IEEE Transactions on Parallel and Distributed Sys-tem.2008
  • 8Marcuello P,Gonzalez A.Clustered speculative multithread-ed processors[].Proceedings of the theth International Conference on Supercomputing.1999
  • 9Steffan J G,Colohan C B,Zhai A,Mowry T C.Ascalable approach tothread-level speculation[].Proceedings of theth International Symposiumon Computer Architecture(ISCA).2000
  • 10Kavi K M,Hyong-Shik K,Arul J,Hurson A R.A decou-pled scheduled dataflow multithreaded architecture[].Proceed-ings of thethInternational Symposiumon Parallel Architec-tureAlgorithms and Networks(I-SPAN).1999

共引文献2

同被引文献187

引证文献19

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部