期刊文献+

求解非线性方程的一个新的8阶迭代方法 被引量:1

A New Eighth-order Iterative Method for Solving Nonlinear Equation
原文传递
导出
摘要 利用权函数法提出了一个求解非线性方程单根的8阶收敛方法,该方法在每步迭代的过程中需要计算3个函数值和1个导数值,故其效率指数为1.682.通过与其他几个方法作数值比较,数值结果表明本方法是有效的. A new family of eighthorder iterative method for solving simple roots of nonlinear e quation is developed by using weight function methods. Per iteration of this method require three e valuations of the function and one evaluation of the first derivative, so the efficiency index of the de veloped methods is 1. 682. Some numerical comparisons are made with several other existing meth ods to illustrate the efficiency and the performance of the newly developed method confirms the theo retical results.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期13-19,共7页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11071041) 福建省自然科学基金资助项目(2013J01006)
关键词 非线性方程 权函数法 收敛阶法 效率指数 数值比较 nonlinear equation weight function method convergence order efficiency in-dex numerical comparison
  • 相关文献

参考文献8

  • 1Ostrowski A M. Solution of euclidean and Banach spaces[M]. New York: Academic Press, 1960.
  • 2Gutierrez MJ, Hernandez M A. A family of Chebyshev-Halley type methods in Banach spaces[J]. Bull Aust Math Soc, 1997, 55: 113 -130.
  • 3King R F. A family of fourth order methods for nonlinear equation[J]. SIAMJ Numer Anal, 1973, 10: 876 - 879.
  • 4Grau M, Diaz-BarreroJ L. An improvement to Ostrowski root-finding methods[J]. Appl Math Comput, 2006 (173): 450 -456.
  • 5Chun C, Ham Y. Some sixth order variants of Ostrowski root-finding methods[J]. Appl Math Comput, 2007 (193): 389 - 394.
  • 6Bi Weihong, Ren Hongmin, Wu Qingbiao. Three-step iterative methods with eighth-order convergence for solving nonlin?ear equations[J]. Comput Appl Math, 2009 ( 225): 105 - 112.
  • 7马昌凤,林伟川.现代数值计算方法[M].北京:科学出版社,2008.
  • 8Weerakoon S, Fernando T G 1. A variant of Newton' s method with accelerated third-order convergence[J]. Appl Math Lett, 2000 (13): 87 -93.

共引文献3

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部