摘要
针对多约束的产品组合问题,提出一种基于PSO的Memetic算法。该算法首先运用约束理论识别并剔除非瓶颈约束,然后基于伪效用比率设计了一个局部搜索算法,并将其加入到PSO算法的种群进化中,以增强PSO算法的局部学习能力。通过对算法在小规模和大规模算例中测试,表明该算法在小规模问题中优于许多已有算法,同时能在相对较短地时间内更有效地求解较大规模产品组合问题。因此本文提出的基于PSO的Memetic算法可以用来有效地求解实际中的产品组合问题。
To solve the product mix problem with multiple Constraints, a memetic algorithms is proposed based on particle swarm optimization(PSO). Firstly, the problem is simplified by recognizing and removing the non-bottle- necks based on the Theory of Constraints(TOC). Secondly, a pseudo utility ratio based local search is proposed to improve the exploitation ability of PSO. Both small-scale benchmark datasets and a group of randomly genera- ted large-scale examples are used to test the proposed approach on solving the product mix problems. The compu- tational results show that the proposed approach outperform some existing approaches, such as TOC, revised TOC, Tabu Search (TS) , Simulated Annealing(SA) and Genetic Algorithms(GA) , and can solve the large-scale problems more effectively. Hence, the proposed approach can be accepted as a practical approach to solve the product mix problem.
出处
《运筹与管理》
CSSCI
CSCD
北大核心
2014年第1期116-122,共7页
Operations Research and Management Science
基金
国家自然科学基金资助项目(70771042)
中央高校基本科研业务费资助(HUST-2012QN208)
湖北省人文社会科学重点研究基地现代信息管理研究中心资助项目
关键词
运筹学
产品组合
模因算法
约束理论
粒子群算法
operation research
product mix problem
memetic algorithms
theory of constraints
particle swarmoptimization