期刊文献+

随机利率下双分红的变保费复合帕斯卡模型

Compound Pascal Model with Two Dividends and Varying Premium Rate Under Random Interest
下载PDF
导出
摘要 利润最大化风险最小化是保险公司运营所追求的目标,破产概率为公司进行风险决策提供了依据。本文基于随机利率环境下,保费随公司盈余水平调整的双分红复合帕斯卡模型,研究了股份制保险公司的有限时间破产概率。我们证明了公司盈余过程的齐次马氏性,得到了有限时间破产概率的计算方法,最后给出了具体算例。 Pursuing maximum profit and minimum risk is the goal during the operation of insurance companies. Ruin probability is the foundation while making risk decisions. Based on the compound Pascal model with two dividends, random interest and varying premium rate, which varies with the surplus level of company, this paper deals with finite time ruin probability of a joint stock insurance company. We have proved the homogeneous Markov property of the surplus process, and given the recursive formulas for finite time ruin probability. Numerical examples have also been provided at last.
作者 殷静燕
出处 《运筹与管理》 CSSCI CSCD 北大核心 2014年第1期203-208,共6页 Operations Research and Management Science
基金 国家自然科学基金资助项目(11171215) 江苏省研究生教育教学改革研究与实践课题资助项目(JGLX12-015) 江苏省"青蓝工程"科技创新团队资助项目(YPB11001)
关键词 概率论与数理统计 有限时间破产概率 齐次马氏性 复合帕斯卡模型 双分红 probability theory and mathematical statistics finite time ruin probability homogeneous Markov property compound Pascal model dividends
  • 相关文献

参考文献3

二级参考文献35

  • 1Asmussen S. Ruin Probabilities. Singapore: World Scientific, 2000.
  • 2Grandell J. Aspects of Risk Theory. New York: Springer-Verlag, 1991.
  • 3Nyrhinen H. On the Tuin Probabilities in a General Economic Environment. Stochastic Process. Appl., 1999, 83(2): 319-330.
  • 4Nyrhinen H. Finite and Infinite Time Ruin Probabilities in a Stochastic Economic Environment. Stochastic Process. Appl., 2001, 92(2): 265-285.
  • 5Tang Q H, Tsitsiashvili G Sh. Precise Estimates for the Ruin Probability in Finite Horizon in a Discrete-time Model with Heavy-tailed Insurance and Financial Risks. Stochastic Process Appl., 2003, 108(2): 299-325.
  • 6Yang H, Zhang L. Martingale Method for Ruin Probability in an Autoregressive Model with Constant Interest Rate. Prob. Eng. Inf. Sci., 2003, 17(2): 183-198.
  • 7Liu G X, Zhao J Y. Joint Distribution of Some Acturial Random Vectors in the Compound Binomial Model. Insurance: Math. Econ., 2007, 40(1): 95-103.
  • 8Reinhard J M. On a Class of Semi-Markov Risk Models Obtained as Classical Risk Models in a Markovian Environment. ASTIN Bull, 1984, 14(1): 23-43.
  • 9Asmussen S. Risk Theory in a Markovian Environment. Scand. Actuarial J., 1989(2): 69-100.
  • 10Asmussen S, Frey A, Rolski T, Schmidt V. Does Markov-modulation Increase the Risk? ASTIN Bull, 1995, 25(1): 49-66.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部