期刊文献+

基于高光谱参量茶叶叶绿素含量估算模型研究 被引量:7

Studying on estimation model of tealeaf chlorophyll content based on high spectral parameters
下载PDF
导出
摘要 根据实测叶绿素含量数据,采用原始光谱、导数光谱技术分析,得到估算铁观音茶树鲜叶叶绿素含量的光谱特征参数(DV640,R716),构建叶绿素含量的光谱参量模型,结果表明:用第5、6片叶的DV640参量构建模型估测精度较高,最高达到93%。 According to the measured data of the chlorophyll content and using the analysis techniques of original spectrum and derivative spectra, the spectral characteristic parameters ( DV640, R716 ) for estimating chlorophyll content in the fresh leaf of tea plant "Tieguanyin" were obtained and the spectral parameter model for estimating chlorophyll content was established. The results showed that the estimation accuracy of the model established by DV64o parameters of the fifth and sixth leaves could reach a higher value of 93%.
出处 《福建农业科技》 2014年第1期27-29,共3页 Fujian Agricultural Science and Technology
基金 福建省自然科学基金(2009J05053)
关键词 高光谱遥感 铁观音 茶树 叶绿素 模型 Hyper-spectral remote sensing Tieguanyin tea plant chlorophyll model
  • 相关文献

参考文献6

二级参考文献33

  • 1XU Yizhuang1, YANG Limin1, XU Zhi3, ZHAO Ying2, LING Xiaofeng3, LI Qingbo1, WANG Jiansheng4, ZHANG Nengwei3, ZHANG Yuanfu1 & WU Jinguang1 1. The State Key Laboratory of Rare Earth Materials and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China,2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China,3. Department of Surgery, Third Hospital, Peking University, Beijing 100083, China,4. Department of Oncology Surgery, the First Hospital of Xi’an Jiaotong University, Xi’an 710061, China Correspondence should be addressed to Wu Jinguang (email: wujg@pku.edu.cn).Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR Fiber-Optic techniques[J].Science China Chemistry,2005,48(2):167-175. 被引量:4
  • 2苏理宏,李小文,梁顺林,王锦地.典型地物波谱库的数据体系与波谱模拟[J].地球信息科学,2002,4(4):7-15. 被引量:33
  • 3[1]AOAC. Method 989. 03. In: K. Hilrich(Ed.), Official methods of analysis [C]. Washing, DC: Association of Official Analytical Chemists. 1990, 74-76.
  • 4[2]Jacquemoud S, Baret F. PROSPECT: a model of leaf optical proerties[J]. Remote Sens. Envrion. 1990, 34:75-91.
  • 5[3]Verhoef W. Earth observation modeling based on layered scattering matrices[J]. Remote Sens. Environ. 1985, 17: 165-178.
  • 6[4]Hosgood B, Jacquemoud S, Andreoli G, Verdebout J, Pedrini G,Schmuck G. Leaf Optical Properties Experiment 93 (LOPEX93) Report EUR-16096-EN [ R ]. European Commission, Joint Research Centre, Institute for Remote Ssnsing Applications, Ispra, Italy.1995.
  • 7[5]Jacqumoud S, Ustin S L, Verdebout J, Schmuck G, Andreoli G, Hosgood, Estimating leaf biochemistry using the PROSPECT leaf optical properties mode[J]. Remote Sens. Environ, 1996, 56: 194-202.
  • 8HANSEN P M, SCHJOERRING J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment,2003,86:542-553.
  • 9HELLANDI S,NAEST,ISAKSSONT.Related versions of the multiplicative scatter correction method for preprcoessing spectroscopic data[J]. Chemometrics and Intelligent Laboratory Systems,1995,29:233-241.
  • 10CANDOLFI A, MAESSCHALCK R D, JOUAN-RIMBAUD D,et al. The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra[J]. Phaxmaceutical and Biomedical Analysis, 1999,21:115-132.

共引文献118

同被引文献175

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部