期刊文献+

基于自然连通度的复杂网络抗毁性分析 被引量:47

Analysis of Invulnerability in Complex Networks Based on Natural Connectivity
下载PDF
导出
摘要 以自然连通度为抗毁性谱测度指标,详细分析了度分布、小世界性、度关联性3种典型复杂网络结构属性对复杂网络抗毁性的影响:通过混合择优模型构造不同度分布复杂网络,研究了度分布对抗毁性的影响,研究表明在相同条件下,度分布越不均匀抗毁性越强;从规则环状格子出发,通过保度随机重连和自由随机重连研究了小世界性对抗毁性的影响,研究表明复杂网络拓扑结构的抗毁性与小世界性并不存在必然的相关性;通过保度同配重连和保度异配重连研究了度关联性对抗毁性的影响,研究表明同配网络比异配网络的抗毁性更强。 The effects of three typical structural properties on invulnerability of complex network topologies are investigated based on the natural connectivity. The effect of degree distribution on invulnerability of complex network topologies is studied by generating complex networks with va- rious degree distributions using mixing preferential attachment model. It is shown that, with the same condition, the more heterogeneous the degree distribution is, the better the invulnerability is. The effect of small-world property on invulnerability of complex network topologies is studied by degree-preserve rewirings and freedom rewirings from regular ring lattices, respectively. It is shown that there is no certain correlation 'between small-world property and invulnerability. The effect of degree correlation on invulnerability of complex network topologies is studied by degree- preserve-assortativerewirings and degree-preserve-disassortativerewirings, respectively. It is shown that assortative networks are more invulnerable than disassortative networks.
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2014年第1期77-86,共10页 Complex Systems and Complexity Science
基金 国家自然科学基金(60904065 71031007 71371185) 新世纪优秀人才支持计划(NCET-12-0141)
关键词 复杂网络 抗毁性 自然连通度 特征谱 omplex networks invulnerability natural connectivity graph spectrum
  • 相关文献

参考文献16

二级参考文献277

  • 1汪秉宏,周涛,何大韧.统计物理与复杂系统研究最近发展趋势分析[J].中国基础科学,2005,7(3):37-43. 被引量:32
  • 2Albert R, Jeong H and Barabasi A-L 2000 Nature 406 378.
  • 3Holme P, Kim B J, Yoon C N and Han S K 2002 Phys. Rev. E 65 056109.
  • 4Bollobas B and Riordan O 2003 Internet Math. 1 1.
  • 5Chi L P, Yang C B and Cai X 2006 Chin. Phys. Lett. 23 263.
  • 6Sun K and Ouyang Q 2001 Chin. Phys. Lett. 18 452.
  • 7Wang J W and Rong L L 2008 Chin. Phys. Lett. 25 3826.
  • 8Hu B, Li F and Zhou H S 2009 Chin. Phys. Left. 26 128901.
  • 9Liu J G, Wang Z T and DangY Z 2006 Mod. Phys. Lett. B 20 815.
  • 10Albert R and Barabasi A-L 2002 Rev. Mod. Phys. 74 47.

共引文献785

同被引文献404

引证文献47

二级引证文献290

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部