期刊文献+

基于URL特征的钓鱼网站检测方式 被引量:5

Detection of Phishing URL Based on Abnormal Feature
下载PDF
导出
摘要 提出一种基于URL特征的钓鱼网站检测方式。首先通过基于域名分割和二元组匹配的方式寻找与正常网站相似的URL。通过分析URL得出匹配特征和URL分割特征,利用上述特征训练分类器来探测钓鱼网站,实验结果表明,该方法的准确率达到95%。 This paper proposes a phishing URL detection method.It uses segmentation based on domain and matching tuple way to find URL which similar to normal URL.Then it uses support vector machine to find phishing URL.In this paper,WO get Experiments on the real data set show that the method can achieve a precision of 95%.
作者 蔺亚东
机构地区 武汉邮科院
出处 《电子测试》 2014年第2期70-72,共3页 Electronic Test
关键词 域名分割 二元组 支持向量机 Domain Split Tuple Support Vector Machine
  • 相关文献

参考文献5

  • 1Tyler Moore, Incentives on Richard Notice and the 7th Workshop on the Clayton. The Take-down [C]. Economics of Impact of In Proc. of Information Security, New Hampshire USA, 3une 25-28 2007 1-24.
  • 2Anti-Phisking Working Group [EB/OL].http://wvrw. antiphishing, org, 2008-01/2011-12-15.
  • 3Engine Kirda, Christopher Kruegel. Protecting Users against Phishing Attacks [J].The Computer Journal, 2006, 49(05):554-561.
  • 4Ian Fette, Norman Sadeh, Anthony Tomasic. Learning to Detec Phishing Emails[C].In Proc. of the WWW 2007, Alberta, Canada, May 8-12, 2007:649-656.
  • 5Phish Tank [EB/OL]. http://w~nv, phishtank, com, 2011- 04/2011-12-15.

同被引文献30

  • 1王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 2Cao Jiuxin, Dong Dan, Mao Bo, Wang Tianfeng,Phishing detection method based on URL features[J].Journal of Sourtheast University,2013.2(29): 134-138.
  • 3Ma J, Saul L K, Savage S, et al. Beyond Blacklists: Learning to Detect Malicious Web Sites from Suspicious URLs [C]//Proc. of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Paris, France: [s. n.], 2009:1245-1254.
  • 4Bilge L, Kirda E, Kruegel C, et al. EXPOSURE: Finding Malicious Domains Using Passive DNS Analysis[C]//Proc. of the 18th Annual Network & Distributed System Security Symposium. Califomia, USA: [s. n.],2011:1-17.
  • 5MA J, SAUL L K, SAVAGE S, et al. Beyond Blacklists: Learning to Detect Malicious Web Sites from Suspicious URLs[C]//ACM SIGMOD. International Conference on Knowledge Discovery & Data Mining, June 28-July 1, 2009, Paris, France. New York: Association for Computing Machinery, 2009: 1245-1254.
  • 6GARERA S, PROVOS N, CHEW M, et al. A Framework for Detection and Measurement of Phishing Attacks[C]// ACM SIGSAC. 2007 ACM Workshop on Recurring Malcode. Alexandria, VA, United states. New York : Association for Computing Machinery, 2007: 1-8.
  • 7LEO Breiman, JEROME Friedman, CHARLES J, et al. Classification and Regression Trees (CART)[M]. New York: Chapman & Hall, 1984.
  • 8KEERTHI S S, SHEVADE S K, BHATTACHARYYA C, et al. Improvements to Platt's SMO Algorithm for SVM Classifier Design[J]. Neural Computation, 2001, 13(3): 637-649.
  • 9SUYKENS J A K, VANDEWALLE J. Least Squares Support Vector Machine Classifiers[J]. Neural processing letters, 1999, 9(3): 293-300.
  • 10宋广玲,郝忠孝.一种基于CART的决策树改进算法[J].哈尔滨理工大学学报,2009,14(2):17-20. 被引量:14

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部