摘要
以 Laplace算子在 Dirichlet条件下的特征值序列为正交基底构造耦合非线性抛物型方程组初边值问题 u t- D1 Δu - k1 u + k2 uv =f (x,t) v t- D2 Δv - k2 uv + k3v =g(x,t)的有限维逼近解 ,证明该逼近解的一致收敛于此问题的广义解 .
The finite dimension approximating solution for initial-boundary problem of coupling nonlinear system of parabolic equationut-D 1Δu-k 1u+k 2uv=f(x,t) ut-D 2Δv-k 2uv+k 3v=g(x,t)is constructed by orthogonal basis of characteristic value sequence of the Laplace operator in the Dirichlet boundary conditions, and the uniform convergence of the approximating solution is proved.
出处
《延安大学学报(自然科学版)》
2000年第4期23-25,36,共4页
Journal of Yan'an University:Natural Science Edition