期刊文献+

New upper limits on deviation from the inverse-square law of gravity in the solar system:a Yukawa parameterization

New upper limits on deviation from the inverse-square law of gravity in the solar system:a Yukawa parameterization
下载PDF
导出
摘要 New physics beyond the standard model of particles might cause deviation from the inverse-square law of gravity. In many theoretical models of modified gravity, it is parameterized by the Yukawa correction to the Newtonian gravitational force in terms of two parameters α and λ. Here α is a dimensionless strength parameter and A is a length scale. Using the supplementary advances in perihelia provided by INPOP10a and EPM2011 ephemerides, we obtain new upper limits on the deviation from the inverse-square law when the uncertainty of the Sun's quadrupole moment is taken into account. We find that INPOP10a yields the upper limits as α =- 3.1× 10-11 and λ= 0.15 au, and EPM2011 gives α = 5.2 × 10-11 and λ=- 0.21 au. In both of them, α is at least 10 times less than the previous results. New physics beyond the standard model of particles might cause deviation from the inverse-square law of gravity. In many theoretical models of modified gravity, it is parameterized by the Yukawa correction to the Newtonian gravitational force in terms of two parameters α and λ. Here α is a dimensionless strength parameter and A is a length scale. Using the supplementary advances in perihelia provided by INPOP10a and EPM2011 ephemerides, we obtain new upper limits on the deviation from the inverse-square law when the uncertainty of the Sun's quadrupole moment is taken into account. We find that INPOP10a yields the upper limits as α =- 3.1× 10-11 and λ= 0.15 au, and EPM2011 gives α = 5.2 × 10-11 and λ=- 0.21 au. In both of them, α is at least 10 times less than the previous results.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2014年第2期139-143,共5页 天文和天体物理学研究(英文版)
基金 Supported by the National Natural Science Foundation of China
关键词 gravitation -- ephemerides -- celestial mechanics gravitation -- ephemerides -- celestial mechanics
  • 相关文献

参考文献38

  • 1Adelberger, E. G., et al. 2003, Annual Review of Nuclear and Particle Science, 53, 77.
  • 2Arfken, G. B., & Weber, H. J. 2005, Mathematical Methods for Physicists 6th ed. (Amsterdam; Boston: Elsevier).
  • 3Damiani, C., et al. 2011, Journal of Atmospheric and Solar-Terrestrial Physics, 73, 241.
  • 4Damour, T., & Esposito-Farese, G. 1994, Phys. Rev. D, 50, 2381.
  • 5Deng, X. 2011, Science in China G: Physics and Astronomy, 54, 2071.
  • 6Deng, X.-M., & Xie, Y. 2013, MNRAS, 431, 3236.
  • 7Deng, X.-M., Xie, Y., & Huang, T.-Y. 2009, Phys. Rev. D, 79, 044014.
  • 8Fienga, A., Laskar, J., Kuchynka, E, et al. 2010, in IAU Symposium, 261, eds. S. A. Klioner, E K. Seidelmann, & M. H. Soffel, 159.
  • 9Fienga, A., Laskar, J., Kuchynka, E, et al. 2011, Celestial Mechanics and Dynamical Astronomy, 111,363.
  • 10Fienga, A., Manche, H., Laskar, J., Gastineau, M., & Verma, A. 2013, arXiv:1301.1510.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部