摘要
人类癌症细胞中通常藏匿着多种引起恶性病变的染色体变异,核酸替换和表观遗传修饰。癌症基因组图谱(the cancer genome atlas,TCGA)计划的目标是获取、刻画并分析人类癌症中大规模、多种变异的分子特征,并且为癌症研究者迅速地提供数据。本文对TCGA数据的四个产生流程以及包含的癌症种类、数据类型、数据水平、分析流程和常用的几种分析工具等进行阐述,同时以卵巢癌(ovarian cancer)为例详细介绍了TCGA数据在突变分析、拷贝数分析、表达分析和通路分析等方面的应用,并对TCGA研究团队近几年有关胶质母细胞瘤(glioblastoma,GBM)的研究方法和结果以及已经完成分析的癌症类型进行综述。
Multiple chromosomal aberrations, nucleotide substitutions, and epigenetic modifications may occur in human cancer cells, which drive malignant transformation. The Cancer Genome Atlas (TCGA) project aims to promote large-scale multi-dimensional analysis of these molecular characteristics in human cancer and rapidly provide data to researchers. In this study, we introduce four flow paths of the production of TCGA data, the collections of various cancer types, the data category and level, and the standardized pipeline of data analysis, as well as several existing data analytical tools. We used ovarian cancer as an example to introduce the application of the TCGA data in the analyses of mutation, copy number, analysis, and expression. We summarized the important findings of glioblasto-ma by TCGA teams.
出处
《中国肿瘤临床》
CAS
CSCD
北大核心
2014年第5期349-353,共5页
Chinese Journal of Clinical Oncology
基金
广东省高校引进人才专项资金(编号:YCJ2011-430)资助~~