期刊文献+

多QoS约束条件下的多目标网络优化 被引量:3

Multi-objective Network Optimization with Multi-constrains QoS Based on Genetic Algorithm
下载PDF
导出
摘要 多约束、多业务、多目标的网络优化是一个复杂且涉及范围广泛的课题。文中在对该课题进行分析的基础上,提出了一种基于遗传算法的多目标网络优化算法(MOPGA)。该算法使用了多约束条件下的路径集预处理,使得每项业务能够获得所需的QoS服务质量,通过对所有业务的路由号进行编码,将问题的解空间转换到遗传算法的搜索空间,达到对全网业务的综合考虑。改进后的适应度函数刻划了网络的费用、链路利用率方差和最大链路利用率、爆破处理以及个体淘汰机制增加了种群多样性,挣脱了未成熟收敛。以求解精度作为算法终止条件,使得算法运行时间减少。仿真实验表明,所提出的算法能高效、快速解决实际多目标网络优化问题,同时在满足多QoS约束条件下可均衡各子目标函数。 Multi-constrains multi-traffic and multi-objective network optimization is a complex issue. A multiobjective network optimization algorithm based on genetic algorithm (MOPGA) is proposed in this paper. Firstly, the algorithm meets the quality of service of each traffic in terms of multi-constrains path set preprocessing. Secondly, it transfers a solution space of the problem into a search space of the genetic algorithm. Thirdly, the improved fitness function depicts the network total cost, link utilization variance and the maximum link utilization. Fourthly, the blast processing and the individual selection mechanism increase the diversity of population and avoid falling into local optimum. Finally, according to the actual error requirement of the different traffic, the algorithm uses the solution error as an end condition. The simulation results show that it can efficiently achieve actual multi-objective network optimization in high speed and balance every subgoal functions while satisfying the multi-constrains QoS.
出处 《电子科技》 2014年第3期18-21,共4页 Electronic Science and Technology
基金 863国家高新技术研究发展计划基金资助项目(2008AA01Z105)
关键词 多业务 多目标 QOS 遗传算法 网络优化 multi -traffic multi -objective QoS genetic algorithm network optimization
  • 相关文献

参考文献10

  • 1崔逊学,林闯.一种带约束的多目标服务质量路由算法[J].计算机研究与发展,2004,41(8):1368-1375. 被引量:13
  • 2PARDALOS P M. A genetic algorithm for the weight setting problem in OSPF routing [ J ]. Journal of Combinational Opti- mization,2002 (6) :299 - 333.
  • 3BAROLLI L, SAWADA H, SUGANUMA T. A new qos rou- ting approach for multimedia applications based on genetic algorithm [ J ]. IEEE CW,2002 (6) :289 - 295.
  • 4MOU D, BISWAS G P, CHANDAN B. Optimization of multi- ple objectives and topological design of data network using genetic algorithm [ C ]. Guangzhou: RAIT,2012.
  • 5LEELA R, THANULEKSHMI N, SELVAKUMAR S. Multi - constrain QoS unicast routing using genetic algorithm( MURU- GA) [J]. Applied Soft Computing,2011 ( 11 ) :1753 - 1761.
  • 6ARIE M C A K, MANUEL K, CHRISTIAN R. On the robust- ness of optimal network designs [ C ]. Guilin: IEEE ICC ,2011.
  • 7CIDON I, ROM R, SHAVrIq" Y. Multi - path routing com- bined with resource reservation [ C ]. Kobe: Proceedings of the IEEE INFOCOM 97, IEEE Communication Society, 1997:92 - 100.
  • 8杨云,徐永红,李千目,刘凤玉.一种QoS路由多目标遗传算法[J].通信学报,2004,25(1):43-51. 被引量:23
  • 9凌永发,徐宗本.一种均衡网络流量的遗传算法[J].计算机工程,2007,33(7):1-3. 被引量:3
  • 10CIDON I, ROM R, SHAVITr Y. Multi - path routing com- bined with resource reservation [ C 1. Kobe: Proceedings of the IEEE INFOCOM 97, IEEE Communication Society, 1997:92 - 100.

二级参考文献22

  • 1S Chen, K Nahrstedt. An overview of quality-of-service routing for next-generation high-speed networks: Problems and solutions.IEEE Network, 1998, 12(6): 64~79
  • 2F Kuipers, P Van Mieghen, T Korkmaz, et al. An overview of constraint-based path selection algorithms for QoS routing. IEEE Communications Magazine, 2002, 40(12): 50~55
  • 3M R Garey, D S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W H Freeman and Company, 1979
  • 4马振华.现代应用数学手册--运筹学与最优化理论卷.北京:清华大学出版社,1998(Ma Zhenhua. Modern Applying Mathermatics ManualOperational Research and Optimization Theory (in Chinese) .Beijng: Tsinghua University Press, 1998)
  • 5A Juttner, B Szviatovszki, I Mecs, et al. Lagrange relaxation based method for the QoS routing problem. INFOCOM 2001,Alaska, USA, 2001
  • 6Z Wang, J Crowcroft. Quality-of-service routing for supporting multimedia applications. IEEE Journal on Selected Areas in Communications, 1996, 14(7): 1228~1234
  • 7M I Henig. The shortest path problem with two objective functions. European Journal of Operational Research, 1985, 25(2): 281~291
  • 8P Van Meghem, H De Neve, F A Kuipers. Hop-by-hop quality of service routing. Computer Networks, 2001, 37(3-4): 407~423
  • 9R Tapabrata. Constrained robust optimal design using a multiobjective evolutionary algorithm. In: Proc of Congress on Evolutionary Computation. New York: IEEE Computer Society Press, 2002. 419~424
  • 10D A Van Veldhuizen, G B Lamont. Evolutionary computation and convergence to a Pareto front. In: John R Koza ed. Late Breaking Papers at the Genetic Programming 1998 Conference. San Mateo,CA: Morgan Kaufmann Publishers, 1998. 221~228

共引文献35

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部