期刊文献+

人类CD4^+T细胞核小体定位模式及其与TFBS分布特征关系研究 被引量:1

Genome-wide nucleosome positioning mode and relationship with TFBS distribution in human CD4^+T cell
下载PDF
导出
摘要 目的研究人类CD4+T细胞全基因组核小体抑制和激活状态下的定位模式,转录因子结合位点(Transcription factor binding site,TFBS)分布特征以及两者之间的关系。方法采用生物信息学软件R、Java等通过编写比对算法进行统计学分析。结果人类CD4+T细胞中核小体定位在染色质上的分布比例为0.6,从休眠到激活状态核小体定位发生位置改变,呈现稳定定位模式和动态定位模式,且比例分别为2%和98%,核小体定位具有较大的动态变化性;核小体定位与TFBS位置关系研究中,发现分布在核小体内的TFBS数目较大,但总体长度较短;而分布在连接DNA上的TFBS数目相对较少,但总体长度较长。结论人类CD4+T细胞休眠和激活状态下全基因组的核小体定位模式基本一致,核小体定位与TFBS关系有明显特征。 Objective To study the human genome-wide nucleosome positioning mode from CD4+ T cell under inhibition and activation status, TFBS distribution characteristics as well as the relationship between them. Methods Using bioinformatics software R, Java to write align- ment algorithms to perform statistical analysis. Results The nucleosomes positioning rate on the chromatin in human CD4 + T cell was about 60%. Nucleosome positioning lacation came to change when condition of cell was from rest condition to activity condition, both stable positio- ning mode and dynamic positioning mode, and the proportion of them in all of nueleosome posi- tioning were 2% and 98% respectively. Nucleosome positioning appeared larger dynamic varia- bility. Studying the position relationship between nucleosome positioning and TFBS, found that the distribution number of TFBS in nucleosome positioning sequences was bigger, but the over- all length was shorter. And distribution number in the linker was relatively small, but the over- all length was longer than the other. Conclusion The distribution of genome-wide nucleosomepositioning in Human CD4 + T cells is basically consistent under rest and activate cell state. The relationship between nucleosome positioning and TFBS has obvious characteristics.
出处 《哈尔滨医科大学学报》 CAS 北大核心 2014年第1期36-39,共4页 Journal of Harbin Medical University
基金 哈尔滨医科大学大学生创新基金项目校B级
关键词 核小体定位 CD4+T细胞 转录因子结合位点 定位模式 nueleosome positioning CD4+ T Cell TFBS positioning mode
  • 相关文献

参考文献3

二级参考文献90

  • 1Zhu J, Zhang MQ. SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinfo rmatics, 1999, 15(7-8): 607-611.
  • 2Jiang C, Xuan Z, Zhao F, Zhang MQ. TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res, 2007, 35(Database issue) D137-140.
  • 3Zheng G, Tu K, Yang Q, Xiong Y, Wei C, Xie Lu, Zhu Y, Li Y. ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008, 24(20): 2416-2417.
  • 4Day WH, McMorris FR. Critical comparison of consensus methods for molecular sequences. Nucleic Acids Res, 1992, 20(5): 1093-1099.
  • 5Staden R. Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res, 1984, 12(1 Pt 2): 505-519.
  • 6Benos PV, Bulyk ML, Stormo GD. Additivity in pro-tein-DNA interactions: how good an approximation is it? Nucleic Acids Res, 2002, 30(20): 4442-4451.
  • 7Maerkl S J, Quake SR. A systems approach to measuring the binding energy landscapes of transcription factors. Science, 2007, 315(5809): 233-237.
  • 8Tomovic A, Oakeley EJ. Position dependencies in tran-scription factor binding sites. Bioinformaties, 2007, 23(8): 933-941.
  • 9Barash Y, Elidan G, Friedman N, Kaplan T. Modeling Dependencies in Protein-DNA Binding Sites. In: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology. Berlin, Germany, 2003, 28-37.
  • 10Zhou Q, Liu JS. Modeling within-motif dependence for transcription factor binding site predictions. Bioinformatics, 2004, 20(6): 909-916.

共引文献31

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部