期刊文献+

方位多通道SAR信号重建性能分析 被引量:3

Signal Reconstruction Performance Analysis of Azimuth Multi-channel SAR
下载PDF
导出
摘要 方位多通道合成孔径雷达(SAR)图像质量受系统参数、阵列误差以及信号处理方法等多种因素的影响。该文针对方位多通道SAR的信号重建性能进行深入分析。首先对信号模型进行完善,引入了重建系数的概念,从而使得多通道SAR信号重建网络的设计具有更大的灵活性,继而在数字波束形成的框架下对一系列重建方法进行了介绍。其次,在得到重建误差功率谱的基础上,进一步给出信噪比与方位模糊比的解析表达式。最后,对各种算法的重建性能进行了定量评估与分析。仿真实验验证了理论分析的正确性。分析结果将为方位多通道SAR系统设计、信号处理以及图像质量预估提供有效支撑。 Image quality of azimuth multi-channel SAR is influenced by such factors as system parameters, array errors, and signal processing strategies. The image quality of azimuth multi-channel SAR is studied deeply. Firstly, the signal model is improved. The introduction of the reconstruction coefficient provides more flexibility for designing the reconstruction network. In the frame of digital beam-forming, a series of reconstruction algorithms are then discussed for signal reconstruction. Secondly, based on the power spectrum of the reconstruction error, the analytical expressions of output Signal to Noise Ratio (SNR) and Azimuth Ambiguity to Signal Ratio (AASR) are deduced. Thirdly, the performance of the reconstruction algorithms is assessed quantitatively. Simulation experiment results confirm the validity of the theoretical analysis. Theoretical results provide technique support to system design, signal processing and image quality evaluation of azimuth multi-channel SAR.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第3期545-551,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61101187)资助课题
关键词 合成孔径雷达 方位多通道 信号重建 性能分析 SAR Azimuth multi-channel Signal reconstruction Performance analysis
  • 相关文献

参考文献15

  • 1Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264.
  • 2Li Z, Bao Z, Wang H, et al.. Performance improvement for constellation SAR using signal processing techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 436-452.
  • 3Wang T and Bao Z. Improving the image quality ofspaceborne multiple-aperture SAR under minimization of sidelobe clutter and noise[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 297-301.
  • 4Gebert N, Krieger G, and Moreira A. Digital beamforming on receive-techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564 590.
  • 5Kou G, Wang Z, and Yao P. Multiple beams spaceborne SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3363-3375.
  • 6Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings-F, 1992, 139(2): 122 135.
  • 7Feng F, Li S, Yu W, et al.. Study on the processing scheme for space time waveform encoding SAR system based on two-dimensional digital beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 910-932.
  • 8Morena L C James K V and Beck J. An introduction to the RADARSAT-2 mission[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 221-234.
  • 9Kim J H, Younis M, Prats P, et al.. Azimuth reconstruction demonstration using TerraSAR-X dual receive antenna mode [C]. International Geoscience and Romote Sensing Symposium, Munich, Germany, 2012: 1537-1540.
  • 10Kim J H, Younis M, Prats P, et al.. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 579-589.

二级参考文献13

  • 1Freeman A, Johnson W T K, Huneycutt B, et al.. The "myth" of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320-324.
  • 2Goodman N, Rajakrishna D, and Stiles J. Wide swath, high resolution SAR using multiple receive aperture[C]. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999: 1767-1769.
  • 3Gebert N, Kreiger G, and Moreira A. Digital beamforming on recieve: techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564-592.
  • 4Li Z, Wang H, Su T, et al.. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82-86.
  • 5Li Z, Bao Z, Wang H, et al.. Performance impovement for constellation SAR using signal processing techiques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 436-452.
  • 6Laskowski P, Bordoni F, and Younis M. Antenna pattern compensation in multi-channel azimuth reconstruction algorithmiC]. Proceeding of the Advanced RF Sensors and Remote Sensing Instruments, The Netherlands, 2011: 1-10.
  • 7Soumekh M and Himed B. SAR-MTI processing of multi-channel airborne radar measurement (MCARM) data [C]. Proceedings of the 2002 IEEE Radar Conference, Long Beach. CA. 2002: 24-28.
  • 8Zhang L, Xing M, Qiu C, et al.. Adaptive two-step calibration for high-resolution and wide-swath SAR imaging[J]. IET Radar, Sonar and Navigation, 2010, 4(4): 548-559.
  • 9Liu A, Liao G, Ma L, et al.. An array error estimation method for constellation SAR systems[J]. IEEE Geoscienee and Remote Sensing Letters, 2010, 7(4): 731-751.
  • 10Kreiger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264.

共引文献13

同被引文献15

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部